
5/9/2011 1

Rev 1.0

PCM-VDX PWM Device Driver Package

2.6.32 Kernel-Based Linux

1 Introduction

1.0 The PCM-VDX PWM Device Driver Package consists of a Linux Device Driver, an

application programming interface library, and example application programs.

1.1 The driver was built and tested on a Linux version 2.6.32-24-generic based Ubuntu 10.04

Lucid Lynx distribution.

1.2 The applications are for use with WinSystems, Inc. PCM-VDX-1-256 and PCM-VDX-2-

512 Single Board Computers (SBC) which provide 16-lines of TTL-compatible digital I/O.

1.3 This driver is provided on an 'as-is' basis and no warranty as to usability or fitness of

purpose is inferred or claimed.

1.4 WinSystems, Inc. does not provide support for the modification of this driver. Customer

application specific queries can be sent to: support@winsystems.com and bug reports may be

sent to: linux_drivers@winsystems.com.

1.5 This work is provided under the terms of the GNU General Public License (GPL).

2 Installation and Build

2.0 The device driver and the sample applications are provided in source code form as a

gzipped TAR-ball.

2.1 It will be necessary to become the root user to build and install the driver and device nodes.

2.2 All application programs assume that any Multi-Function Port being used has been

configured for PWM using the BIOS Setup Utility.

2.3 The MAJOR number for this device is allocated dynamically. A static number can be

assigned by editing the pcmvdxpwm_init_major variable at the beginning of pcmvdxpwm.c.

2.4 To create the device driver Loadable Kernel Module and the sample applications in a

command shell, execute: make all. The device driver Loadable Kernel Module pcmvdxpwm.ko

is created and moved to the appropriate kernel driver directory. The file access permissions are

set to allow access by all users and groups; they may be changed manually as desired. The two

sample programs, pulse and poll, are also built.

 PCM-VDX PWM Device Driver Package

5/2/2011 2

Rev 1.0

make install will install the kernel driver to a kernel directory and create dependencies.

make uninstall will remove the kernel driver from the kernel directory.

make pulse will create the pulse sample program.

make poll will create the poll sample program.

make clean will remove objects created by the build.

make spotless will forcibly remove all artifacts of the build.

2.5 The device driver can be loaded with the provided initialization script pcmvdxpwm_load or

manually. In either case modprobe is used to install the driver. Executing:

modprobe pcmvdxpwm.ko

The pcmvdxpwm_load script can be added to the /etc/rc.local file to load the driver

automatically on boot.

3 Driver Usage

3.0 The PCM-VDX Digital I/O consists of sixteen dedicated programmable I/O pins consisting

of two individual 8-bit ports. Each port can be configured as GPIO or Pulse Width Modulation

(PWM) outputs.

All GPIO pins are independent and can be configured as inputs or outputs. When configured as

outputs, pins have 8 mA drive capability and are unterminated; when configured as inputs, pins

are pulled-high with a 75k ohm resistance. Each input pin also supports interrupt triggers.

All PWM pins are independent and can be configured to output a continuous frequency or a

fixed number of pulses. The frequency is selected by programming high and low pulse count

values. An interrupt can be used to indicate when a pulse count has completed.

The features are configured and controlled utilizing PCI configuration and I/O access

instructions.

3.1 The file pcmvdxpwmio.c implements the ioctl interface and presents to the application a set

of standard C functions that may be called directly from the application without any need for

dealing with, or understanding how to access the driver through ioctl. An application must

include pcmvdxpwm.h and link to pcmvdxpwmio.o.

3.2 Applications using the driver may enable interrupts on any or all of the channels. The

application may further specify the event polarity which will trigger the interrupt. Within the

driver itself, interrupt events are buffered and handed to waiting processes. Further details on

interrupt handling can be seen in the later sections which detail the functions implemented

through ioctl or by examining the sample programs.

 PCM-VDX PWM Device Driver Package

5/2/2011 3

Rev 1.0

3.3 Application Programming Interface

An object file containing the Application Programming Interface utilized by user level programs

to access the Kernal Loadable Module device driver driven devices is created as part of the build

procedure.

3.3.0 int ioctl_enab_pwm(int channel, unsigned long low, unsigned long high)

This function requires arguments of channel (0-15) and the 32-bit pulse values, low and high,

which program the low and high counts for the waveform. This function configures a continuous

waveform. Return value is 0 on success or -1 if the device is inaccessible.

3.3.1 int ioctl_enab_pwm_rc(int channel, unsigned long low, unsigned long high,

 unsigned long repeat)

This function requires arguments of channel (0-15) and the 32-bit pulse values, low and high,

which program the low and high counts for the waveform. This function configures a single

waveform with the number of pulses equal to the repeat argument. Return value is 0 on success

or -1 if the device is inaccessible.

3.3.2 int ioctl_disab_pwm(int channel)

This function requires an argument of channel (0-15). This function disables the selected

channel. Return value is 0 on success or -1 if the device is inaccessible.

3.3.3 int ioctl_enab_pwm_int(int channel)

This function requires an argument of channel (0-15). The device is then armed and completion

of the repeat count will cause an interrupt to occur. The driver will buffer these interrupts and

hand them to calling programs using either ioctl_get_pwm_int() or ioctl_wait_pwm_int(). Return

value is 0 on success or -1 if the device is inaccessible.

3.3.4 int ioctl_disab_pwm_int(int channel)

This function requires an argument of channel (0-15). This function disables interrupts for the

selected channel. Return value is 0 on success or -1 if the device is inaccessible.

3.3.5 int ioctl_clr_pwm_int(int channel)

This function requires an argument of channel (0-15). This function is ordinarily used within an

Interrupt Service Routine to clear an interrupt and re-enable the interrupt for that particular

channel. Return value is 0 on success or -1 if the device is inaccessible.

3.3.6 int ioctl_get_pwm_int(void)

This function requires no arguments and returns a channel on which an interrupt event has

occurred. Returns values of 1 to 16 correspond to Channel 0 to Channel 15. Return value is 0 if

no event has occurred on any channel or -1 if the device is not accessible. This function does

NOT wait for an event.

3.3.7 int ioctl_wait_pwm_int(void)

This function is nearly identical to ioctl_get_pwm_int() with one major exception. If there is no

error and no event has occurred, the current process will sleep until some event is sensed. Certain

signals can also awaken the process and cause it to return without an actual event having

 PCM-VDX PWM Device Driver Package

5/2/2011 4

Rev 1.0

occurred. This is by design, and allows a process to be terminated even though it is asleep. As

with ioctl_get_pwm_int() there are three possible types of return values: 0 signals that no

interrupt occurred, -1 indicates the device is not accessible, and a value between 1 and 16

indicates the channel on which an event sense occurred. This function requires no arguments and

returns a channel on which an interrupt event has occurred.

3.3.8 int ioctl_pwm_set_clk(int freq)
This function requires an argument of frequency (0-1). This function selects the internal clock

speed for the PWM clock of 10 MHz (0) or 50 MH (1). Return value is 0 on success or -1 if the

device is inaccessible.

4 Sample Programs

4.0 Pulse

The “Pulse” sample application is a simple program that illustrates how to program waveforms

on specific channels in both continuous and non-continuous modes. Using the channel number

provided on the command line, waveforms with different frequencies and duty cycles are output

in continuous mode. Then a waveform of varying pulse lengths in non-continuous mode is

output on the same channel. The Pulse executable is built as part of the driver build but may be

built separately by: make pulse.

4.1 Poll
The “Poll” sample application is a step-up from “Pulse” in complexity. It uses the POSIX threads

capability of Linux to create two sub-processes that are used to monitor the device for interrupts

generated on any of 16 channels. Whenever either of the two monitor processes detects an

interrupt, a message is displayed, and an event counter is updated. The foreground code

simulates a command based user interface. Refer to the source code of poll.c for a further

discussion of the methodology used in this program. This program demonstrates a simple way to

coordinate, in the context of a single application program, with external asynchronous stimulus

events. The Poll executable may be built separately by: make poll.

