

8/30/2011 1

Rev 1.1

PCMMIODA Device Driver Package

2.6.31 Kernel-Based Linux

1 INTRODUCTION

1.1 This driver has been built and tested on the Linux Kernel 2.6.31-14 running the

Ubuntu 9.10 distribution.

1.2 The driver supports the WinSystems' PCM-MIO-DA board, including Digital to

Analog (DAC) and Digital I/O (DIO).

1.3 This driver is provided 'as-is' and no warranty as to usability or fitness of purpose

is claimed.

1.4 WinSystems does not provide support for the modification of this driver. Bug

reports may be sent to linux_drivers@winsystems.com

1.5 This driver is provided under the terms of the GNU General Public License.

2 INSTALLATION

2.1 The driver source code is distributed in a tarball. The file should be extracted and

the contents copied to the desired development directory.

2.2 It will be necessary to become the root user to build the driver and the device

node.

2.3 The default MAJOR number for this device is 121. It may easily be changed by

editing the definition at the beginning of the Makefile. To create the driver and

the sample programs type:

make all

2.4 The device driver pcmmioda.ko is created and installed in a kernel directory. The

command chmod is executed to allow access by all users and groups. These

permissions can be changed manually as desired. Four sample programs are also

built.

2.5 The driver must be explicitly loaded with the pcmmioda_load script or manually.

In either case modprobe is used to load the driver. Since the PCM-MIO-DA board

is not plug-n-play and I/O probing could be problematic, it is required to specify

 PCMMIODA Device Driver Package

8/30/2011 2

Rev 1.1

the base address of the device on the command line when loading the driver. A

sample command line loading might look like this:

modprobe pcmmioda io=0x300 irq=5

2.6 This would install the driver with a base port of hex 300 using IRQ5. Interrupts

are not required for driver loading but none of the event sense or wait_xxx_int

functions will be usable. The internal routines for normal DIO bit operations and

A2D and DAC functions do not require interrupts.

2.7 The required pcmmioda device nodes are also created in /dev when the

pcmmioda_load script is executed. This file should be modified according to the

devices installed. To load the driver automatically at boot, add the script to

/etc/rc.local.

3 DRIVER USAGE

3.1 The PCM-MIO-G-DA is accessed in hardware as a byte oriented device.

Therefore, the driver is implemented as a character device. Using file I/O read,

write, and seek operations although crudely implemented for compatibility will

NOT give the desired results. The driver was designed for maximum flexibility

using ioctl as its exclusive programming interface.

3.2 The file mioda_io.o implements the ioctl interface and presents the application

with a set of standard C functions that may be called directly from the application

without any further need for dealing with or understanding of how to access the

driver using ioctl. An application must merely include mioda_io.h and link to

mioda_io.o to provide this simple interface.

4 ‘C’ LANGUAGE LIBRARY

4.1 All of functions from mioda_io.o are standard ‘C’ language functions. There are

also two global variables available to support error detection and handling. They

are defined in mioda_io.h as:

extern int mio_error_code;

extern char mio_error_string[128];

The first is an integer holding the result code from that last function call. A non-

zero value indicates an error had occurred. The file mioda_io.h also defines these

error codes. In addition to the error code, an error string, MIO_ERROR_STRING,

is generated when an error occurs. This string generally gives the function name

and the error type that occurred.

 PCMMIODA Device Driver Package

8/30/2011 3

Rev 1.1

FUNCTION LIST

The supported function from mioda_io.o will be broken down into four categories, three

for the three distinct functional modules on the board and a fourth for common use. The

following list is a complete list of functions sorted by category. Following the list each

function will be described in more detail by category.

Analog Output Functions

================================

buffered_dac_output

dac_read_status

disable_dac_interrupt

enable_dac_interrupt

set_dac_output

set_dac_span

set_dac_voltage

wait_dac_int

wait_dac_ready

write_dac_command

write_dac_data

DIO Functions

================================

dio_clr_bit

dio_clr_int

dio_disable_bit_int

dio_enable_bit_int

dio_get_int

dio_read_bit

dio_set_bit

dio_write_bit

disable_dio_interrupt

enable_dio_interrupt

read_dio_byte

wait_dio_int

write_dio_byte

MIO Support Functions

===============================

mio_read_irq_assigned

mio_read_reg

mio_write_reg

 PCMMIODA Device Driver Package

8/30/2011 4

Rev 1.1

ANALOG OUTPUT FUNCTIONS

buffered_dac_output – Send programmed values to the DAC(S)

Prototype int buffered_dac_output(int dev_num, unsigned char *cmd_buff,
unsigned short *data_buff)

Arguments dev_num - The device to be accessed (0-3)
cmd_buff – Pointer to an 0xff terminated array of channel numbers
data_buff – Pointer to an equal element array of data values for
the DAC(S)

Return 0 = No error occurred
1 = An error occurred. Check mio_error_code.

Description This function reads the cmd_buff array, which holds channel
numbers, until a 0xff character is read. For each element in the
cmd_buff array the corresponding element in the data_buff array is
read and sent to the corresponding DAC channel. The function
returns when all values have been sent or upon an error condition.

dac_read_status – Read the DAC status register

Prototype unsigned char adc_read_status(int dev_num, int dac_num)

Arguments dev_num - The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)

Return 8-Bit unsigned status register content.
Valid only if mio_error_code == 0.

Description The function is used internally by a number of other DAC functions.
It is normally not used by application code. Refer to the PCM-MIO-
DA operations manual for bit definitions for this register.

disable_dac_interrupt – Disable DAC interrupt generation

Prototype int disable_dac_interrupt(int dev_num, int dac_num)

Arguments dev_num - The device to be accessed (0-3)
dac_num – DAC controller number (0-1)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function turns off the interrupt generation capability at the
specified DAC controller. Interrupt processing consumes processor
cycles so if the DAC function wait_dac_int is not being used the
interrupt should be disabled. The internal DAC functions do not use
interrupts for their functionality.

 PCMMIODA Device Driver Package

8/30/2011 5

Rev 1.1

enable_dac_interrupt – Enable DAC interrupt generation

Prototype int enable_dac_interrupt(int dev_num, int dac_num)

Arguments dev_num - The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function enables hardware interrupts at the specified DAC
controller. An error is returned if there is no IRQ assigned to the
driver. The default DAC handler simply clears the interrupt and
returns. It serves no purpose unless the wait_dac_int function is
being used for interrupt handling. All of the internal DAC routines
do not use interrupts. Interrupts should be enabled only if the
wait_dac_int function will be used by the application.

set_dac_output – Output a value to a DAC channel

Prototype int set_dac_output(int dev_num, int channel, unsigned short
dac_value)

Arguments dev_num - The device to be accessed (0-3)
channel - DAC channel number (0-8)
dac_value – A 16-bit value to be sent to the DAC

Return 0 = No error occurred
1 = An error occurred. Check mio_error_code.

Description This function sends the specified 16-bit value to the DAC channel
number specified. The voltage this value represents is dependent
upon the range set up with a previous call to set_dac_span. This
function is usually not called by application code which may more
easily use the higher level function set_dac_voltage.

set_dac_span – Set a DAC channel’s output range

Prototype int set_dac_span(int dev_num, int channel, unsigned char
span_value)

Arguments dev_num - The device to be accessed (0-3)
channel – The DAC channel number (0-7)
span_value – An 8-bit argument of one of the following :
 DAC_SPAN_UNI5 0 to 5 Volt scale, Unipolar
 DAC_SPAN_UNI10 0 to 10 Volt scale, Unipolar
 DAC_SPAN_BI5 +/- 5 Volt scale, Bipolar
 DAC_SPAB_BI10 +/-10 Volt scale, Bipolar
 DAC_SPAN_BI2 +/-2.5 Volt scale, Bipolar
 DAC_SPAN_BI7 -2.5 to +7.5 Volt scale, Bipolar

 PCMMIODA Device Driver Package

8/30/2011 6

Rev 1.1

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function sets the output range on the specified channel. It will
affect the current output level by using the current DAC value in the
new scale range.

set_dac_voltage – Set a DAC channel output to a voltage

Prototype : int set_dac_voltage(int dev_num, int channel, float voltage)

Arguments dev_num - The device to be accessed (0-3)
channel – The DAC channel number (0-7)
voltage - The desired output voltage (-10.0 to +10.0)

Return 0 = no error occurred.
1 = An error occurred. Check mio_error_code.

Description This function sets the specified DAC output channel to the
requested voltage. The set_dac_span call is made first to give the
most precise range available for the requested voltage. NOTE: It is
possible to get a spike (up or down) in voltage as the range value is
programmed and until the new value is output. If this is of critical
concern it will be necessary to set up the range at an appropriate
time, leave it as-is, and output values directly using
set_dac_output.

wait_dac_int - Wait for DAC interrupt to occur

Prototype int wait_dac_int(int dev_num, int dac_num)

Arguments dev_num - The device to be accessed (0-3)
dac_num - The DAC converter number (0-1)

Return 0 = Interrupt occurred.
1 = An error occurred. Check mio_error_code.

Description This function waits within the driver to be released on the
occurrence of an interrupt on the specified DAC controller. The
default handler clears, the interrupt, and releases waiting threads
only.

wait_dac_ready - Wait for DAC Controller to be ready

Prototype int wait_dac_ready(int dev_num, int channel)

Arguments dev_num - The device to be accessed (0-3)
channel – The DAC channel number (0-7)

Return 0 = The controller is idle and ready for a new command.
1 = An error occurred. Check mio_error_code.

 PCMMIODA Device Driver Package

8/30/2011 7

Rev 1.1

Description This function is used to wait for DAC output shifts to complete. It
reads the status port until the controller ready or a timeout error
occurs.

write_dac_command – Write command byte to DAC controller

Prototype int write_dac_command(int dev_num, int dac_num, unsigned char
value)

Arguments dev_num - The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)
value – The 8-bit command value

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function is used internally to issue commands to the DAC
controller. The command bytes are makeup of commands,
channels, and command parameters. Refer to the Linear
Technology’s DAC datasheet for more details. Applications should
never need to access this function directly

write_dac_data – Write Data to DAC controller

Prototype int write_dac_data(int dev_num, int dac_num, unsigned value)

Arguments dev_num - The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)
value – The 16-bit data value to be sent to the DAC controller

Return 0 = No error occurred
1 = An error occurred. Check mio_error_code.

Description This function is used internally to pass the 16-bit data value to the
controller. This is NOT sufficient to update a DAC output voltage.
The data must be followed by a command indicating, span,
channel, etc. This function should never be needed by applications
code.

 PCMMIODA Device Driver Package

8/30/2011 8

Rev 1.1

ANALOG OUTPUT SAMPLES

Also included with the library are two DAC sample application programs which utilize

the functions in the library. There is extensive commenting within the sample

applications to facilitate understanding of their usage.

DACOUT.EXE

The file dacout.c is the source for sample application number one. This sample is shown

first because it utilizes the highest level function in the library and for a large number of

users will be the only DAC function required from the library.

This application is supplied in its source form dacout.c. It is invoked at the command line

as:

 ./dacout dev_num channel voltage

Where d is the device number from 0 to 3 and channel is a value from 0 to 7 indicating

the DAC channel number to update. The voltage argument can be from -10.0 Volts to

+10.0 volts. The specified voltage is output on the desired channel. Within dacout.c the

code calls the high-level function.

 set_dac_voltage(dev_num, channel, voltage);

This function is an auto ranging function, in that it examines the voltage parameter, and

chooses an output range that will give the most precise output and then sets the output

voltage as specified. Using this function is the easiest way to update the voltage on a

channel.

DACBUFF.EXE

The file dacbuff.c is the source code for DAC sample application number two. This

application revolves around use of the buffered_dac_output function call. It is run at the

command line and there is no screen output while running. Pressing any key will exit the

program. This program fills two arrays, the first with channel numbers and the second

with values for the corresponding channel indices. In this program only channel 0 is used

and the voltage steps from -10V to +10V in 4 count increments. Use an oscilloscope on

channel 0 of the DAC output connector to view the results.

 PCMMIODA Device Driver Package

8/30/2011 9

Rev 1.1

DIGITAL I/O (DIO) FUNCTIONS

DIO functions note: The registers and the actual I/O pins on the chip are inverted from

each other. The DIO functions refer to the registers to avoid confusion when

programming, but it’s important to realize that setting a bit causes the actual output pin to

go low and clearing a bit releases the output to be pulled high by the onboard pull-up

resisters. Also note that bits must be cleared in order to use them as inputs.

dio_clr_bit – Clear a DIO register bit

Prototype int dio_clr_bit(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-48)

Return 0 = no error occurred.
1 = An error occurred. Check mio_error_code.

Description This function clears the specified bit in the DIO data register for that
bit. This causes the output pin to go high.

dio_clr_int - Clear a pending event sense interrupt

Prototype int dio_clr_int(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-24)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function clears a pending interrupt on a bit_number that was
obtained from the dio_get_int function call. A bit interrupt that is not
cleared cannot generate additional interrupts. In the Linux driver
once enabled, DIO sense interrupts are intercepted, buffered, and
cleared by the driver. It is only when polling for transition events
should application code need to call this function.

dio_disab_bit_int – Disable event sense interrupts on a bit

Prototype int dio_disab_bit_int(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-24)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function disables the event sense interrupt generation on the
specified bit.

 PCMMIODA Device Driver Package

8/30/2011 10

Rev 1.1

dio_enable_bit_int – Enable event sense interrupts on a bit

Prototype int dio_enable_bit_int(int dev_num, int bit_number, int polarity)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-24)
polarity – The specified interrupt polarity :
 RISING
 FALLING

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function enable event sense interrupts on a specific bit with
the specified polarity. NOTE: The polarity argument in this case is
from the PIN perspective. Specifying RISING for polarity will
generate a bit interrupt when the voltage on the input pin RISES
from a low to a high. Actual interrupts will not be generated by the
dio section unless a call to enable_dio_interrupt has been made. If
these two calls are not made, it’s still possible to poll for events
using dio_get_int after the dio_enable_bit_int call.

dio_get_int – Get highest priority event sense interrupt pending

Prototype int dio_get_int(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0 = No interrupt pending
1-24 – The bit number of the highest priority pending interrupt
 Valid only when mio_error_code == 0.

Description This function queries the kernel driver for a buffered DIO event
sense interrupt. If the driver has any buffered it delivers the number
of the oldest one in the queue. If there is nothing in the buffer, the
driver scans the hardware checking for a transition sense event.
This allows dio_get_int to be used with both interrupt processing
enabled or in a polled mode. A return of 0 indicates that there is no
event sense pending. In polled mode, events are prioritized such
that if multiple events are pending the lowest bit number with a
pending transition event will be returned. In either polled, or
interrupt mode, handler code should repeatedly call this function
until a zero is returned so that all events are handled. In polled
mode dio_clr_int should be called for each pending event.

 PCMMIODA Device Driver Package

8/30/2011 11

Rev 1.1

dio_read_bit – Read a DIO bit value

Prototype int dio_read_bit(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-48)

Return 0 = Bit register is 0
1 = Bit register is 1
Valid only if mio_error_code == 0.

Description This function is used to either read an input bit or to read back the
state of an output. Again note the inversion that takes place i.e. if
an input pin is pulled low it will reflect as a 1 when the register bit is
read.

dio_set_bit – Set DIO register bit

Prototype int dio_set_bit(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-48)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function sets the specified bit in the appropriate dio output
register. Because of inversion, setting a bit causes the output pin to
go low. A bit cannot be used for input when set. Use dio_clr_bit to
enable a pin for input.

dio_write_bit – Write a DIO register bit

Prototype int dio_write_bit(int dev_num, int bit_number, int val)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-48)
val – The desired bit value (0 or 1)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function provides an alternate to the dio_set_bit and the
dio_clr_bit functions. Writing a 1 is the same as dio_set_bit and
writing a 0 is the same as dio_clr_bit. Refer to those two functions
for additional details.

 PCMMIODA Device Driver Package

8/30/2011 12

Rev 1.1

disable_dio_interrupt – Disable DIO module interrupts

Prototype int disable_dio_interrupt(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function disables the DIO module on the board from
generating any physical interrupts

enable_dio_interrupt – Enable DIO module interrupts

Prototype int enable_dio_interrupt(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function enables physical interrupts in the DIO section of the
hardware. This is only the first of the three steps necessary to
obtain notification of event sense interrupts. The second step is
multiple calls to dio_enab_bit_int for all bits to be monitored. Third a
call to wait_dio_int by an interrupt handling thread is necessary to
signal an application when an event occurs. The sample program
poll shows the usage all three of these functions. Note that an error
occurs if there is no IRQ resource assign to the board.

read_dio_byte – Read an 8-Bit DIO register

Prototype unsigned char read_dio_byte(int dev_num, int offset)

Arguments dev_num - The device to be accessed (0-3)
offset – The DIO register number (0-10)

Return The 8-bit register contents
Valid only if mio_error_code == 0

Description This function allows direct reading of any of the 10 DIO data and
control registers. This function is used internally and its use except
for reading the first 6 ports (The actual data ports) is highly
discouraged. Refer to the PCM-MIO-DA operations manual for the
DIO register and bit definitions.

 PCMMIODA Device Driver Package

8/30/2011 13

Rev 1.1

wait_dio_int - Wait for DIO event sense interrupt to occur

Prototype int wait_dio_int(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0 = No Interrupt occurred. Thread signaled by system.
1 = An error occurred. Check mio_error_code.

Description This function waits within the driver to be released on the
occurrence of an interrupt on the DIO lines. The default handler
buffers, and clears, the interrupt, and releases waiting threads. This
function will not return an error when operating in polled mode, but
it will wait forever or until the parent process or the system
terminates it.

write_dio_byte – Write a byte to a DIO register

Prototype int write_dio_byte(int dev_num, int offset, unsigned char value)

Arguments dev_num - The device to be accessed (0-3)
offset – DIO register number (0-10)
value – An 8-bit value to write to the register

Return 0 = No error occurred.
1 = Error occurred. Check mio_error_code.

Description This function allows write access to any of the 10 control and data
registers of the DIO section of the board. This function is used
internally by the other dio functions. Its use by applications is highly
discouraged and may result in incorrect operation of other functions
if used outside of the driver environment.

 PCMMIODA Device Driver Package

8/30/2011 14

Rev 1.1

DIO SAMPLE PROGRAMS

Also included with the library are two DIO sample application programs which utilize the

functions in the library. There is extensive commenting within the sample applications to

facilitate understanding of their usage.

FLASH.EXE

The file flash.c is the source for sample application number one. This sample uses the

dio_set_bit and the dio_clr_bit functions to successively flash each bit low and then high.

The output can be examined with an oscilloscope or with LEDs. There is no screen

display while running. Pressing any key exits the program.

DIOTEST.EXE

The file diotest.c is the source code for the second sample application. This sample

program uses the write_dio_byte and dio_write_bit functions to alter the contents of a

specified digital port. The register contents are displayed after each alteration for

verification.

POLL.EXE

The file poll.c is the source code for the third sample application. This sample program

enable bit sense interrupts on the first 24 lines. It also enables dio board interrupts and

creates a concurrent thread to receive the interrupt notification. In this simple

demonstration the event thread simply counts the interrupts and then goes back to waiting

for more events. Pressing any key will exit the program. Examining the source code will

provide more details.

 PCMMIODA Device Driver Package

8/30/2011 15

Rev 1.1

MIO SUPPORT FUNCTIONS

MIO functions note: All of these functions are used internally by the support library

mioda_io.o. They are documented here for completeness and for the very rare occurrence

where access to the low level functions may be required.

mio_read_irq_assigned – Get IRQ assignment from kernel driver

Prototype int mio_read_irq_assigned(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0, 0x30 – 0x3f IRQ assigned. IRQ + 0x30
Valid only if mio_error_code == 0

Description This function retrieves the IRQ assignment from the kernel driver. If
no IRQ has been assigned, a zero is returned. This value is used to
program the individual board sections for the actual hardware
interrupt assigned.

mio_read_reg - Read an MIO register

Prototype unsigned char mio_read_reg(int dev_num, int offset)

Arguments dev_num - The device to be accessed (0-3)
offset – MIO register number (0 – 26)

Return 8-bit register contents
Valid only if mio_error_code == 0

Description This function reads any of the 27 registers within the PCM-MIO-DA
board. Refer to the PCM-MIO-DA operations manual for register
and bit definitions.

mio_write_reg – Write to an MIO register

Prototype int mio_write_reg(int dev_num, int offset, unsigned char value)

Arguments dev_num - The device to be accessed (0-3)
offset - MIO register number (0-26)
value - 8-bit value to write

Return 0 = No error occurred
1 = An error occurred. Check mio_error_code.

Description This function allows write access to all 27 MIO registers. This
function is extremely powerful and its careless use can result in
system lockups, crashes, or incorrect operation of the various MIO
support functions. Refer to the PCM-MIO-DA operations manual for
register and bit definitions.

