
11/16/2011 1

Rev 3.0

PCM-MIO-G Device

Windows Device Driver Package

1 Introduction

1.1 The PCM-MIO WDM Driver package is designed for and has been tested with Microsoft

Windows XP/XP Pro/XP Embedded and Windows 7/7 Embedded. It will NOT work with

Windows 3.X, Windows 9X, or Windows NT.

1.2 The driver package supports two Linear Technology’s 185X Analog to Digital

Converters (ADC), two Linear Technology’s LTC1824 Digital to Analog Converters (DAC) as

well as a WinSystems’ WS16C48 with 48 digital I/O lines.

2 Installation

2.1 The driver and support files are supplied in a zip file. Installation is accomplished via the

“Add New Hardware” applet in the Windows control panel. Select “Have Disk” and navigate to

the floppy drive containing the driver files. Once selected, the Windows installer will copy the

PCMMIO.SYS file and the MIO_IO.DLL files to the appropriate directories in the Windows

installation.

2.2 The default hardware configuration for installation is I/O port 300H and IRQ5. The board

must be configured according to the hardware manual and the Windows resource configuration

must match the hardware jumper settings. The driver I/O port setting can be changed using the

Device Manager under the System icon in the Windows Control Panel. An IRQ setting is not

required for driver functionality and logical configuration number 3 allows for such an

installation. None of the event sense notification features will be available when no IRQ is

assigned.

2.3 The example programs, the header file, and library file are not copied to the Windows

system automatically at driver installation. These files must be manually copied, as desired, to a

test or development system or folder. It is recommended that the binary executable files be

copied to the target system in order to test driver installation and functionality. Usage of these

example programs are described later in this document. There are a couple of MFC and C

language runtime DLL’s that will also be required if the MIO_DEMO.EXE program is to be

executed. These are included in the zip file.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 2

Rev 3.0

3 Driver Overview and Architecture

3.1 The file PCMMIO.SYS is the WDM kernel-mode driver which facilitates access to the

underlying hardware. The multi-purpose PCM-MIO board does not fit any of the standard

Microsoft device classes and therefore implements a class of its own.

3.2 Because of its unique capabilities, the only practical interface to the driver is through the

use of Windows IOCTL system calls. The syntax and usage of IOCTL can be a bit

overwhelming to the less experienced programmer which can lead to system crashes and

undesired operation. The MIO driver package wraps all the dirty secrets of the IOCTL interface

into a support library MIO_IO.DLL which exports a number of standard ‘C’ functions which are

easily utilized by programmers of nearly all experience levels.

4 Driver Usage

4.1 As described in the previous section, the API to the MIO is implemented using 45

exported ‘C’ language functions which should be callable from C/C++ as well as Visual Basic

and other languages capable of ‘C’ linkage calls.

4.2 The examples and documentation that follow will focus on C/C++ programs. Our sample

programs were developed using Microsoft’s Visual Studio 2008. There are several project files

in the zip file that can be rebuilt with the appropriate tools.

4.3 When developing Windows applications ranging from simple Win32 console

applications to GUI enhanced MFC applications, all that’s required to utilize the exported

functions from MIO_IO.DLL is the inclusion of the header file MIO_IO.H which holds the

function prototypes and export info, and linking the application with the static portion of the

library MIO_IO.LIB. Of course, MIO_IO.DLL must be present in the current path and the driver

itself must be loaded.

NOTE: The MIO driver is a true Windows Kernel mode driver. It is NOT a virtual device driver,

and as such, non-Windows applications, running at the command prompt will NOT be able to

access the hardware.

5 ‘C’ Language Library

5.1 All exported functions from MIO_IO.DLL are standard ‘C’ language functions. There are

also 2 variables exported from the DLL to support error detection and handling. They are defined

in MIO_IO.H as:

extern MIO_IO_API int mio_error_code;

extern MIO_IO_API char mio_error_string[128];

The first is an integer holding the result code from the last function call. A non-zero value

indicates an error had occurred. MIO_IO.H also defines these error codes. An error string,

MIO_ERROR_STRING, is also generated when an error occurs. This string generally gives the

function name and the error type that occurred.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 3

Rev 3.0

Function List

The exported function from MIO_IO.DLL will be broken down into four categories, three for the

distinct functional modules on the board and a fourth for common use. The following list is a

complete list of exported functions sorted by category. Following the list each function will be

described in more detail by category.

================================

Analog Input Functions

================================

adc_auto_get_channel_voltage

adc_buffered_channel_conversions

adc_convert_all_channels

adc_convert_single_repeated

adc_convert_to_volts

adc_get_channel_voltage

adc_read_conversion_data

adc_read_status

adc_set_channel_mode

adc_start_conversion

adc_wait_ready

disable_adc_interrupt

enable_adc_interrupt

set_adc_event

write_adc_command

================================

Analog Output Functions

================================

buffered_dac_output

dac_read_status

disable_dac_interrupt

enable_dac_interrupt

set_dac_event

set_dac_output

set_dac_span

set_dac_voltage

wait_dac_ready

write_dac_command

write_dac_data

 PCM-MIO-G Windows Device Driver Package

11/16/2011 4

Rev 3.0

================================

DIO Functions

================================

dio_clr_bit

dio_clr_int

dio_disable_bit_int

dio_enable_bit_int

dio_get_int

dio_init_io

dio_read_bit

dio_set_bit

dio_write_bit

disable_dio_interrupt

enable_dio_interrupt

read_dio_byte

set_dio_event

write_dio_byte

===============================

MIO Support Functions

===============================

mio_enable_event_handling

mio_open_device

mio_read_irq_assigned

mio_read_reg

mio_write_reg

 PCM-MIO-G Windows Device Driver Package

11/16/2011 5

Rev 3.0

Analog Input Functions

adc_convert_single_repeated - Multiple conversions on a single channel
Prototype int adc_convert_single_repeated(int devNum, int channel, unsigned

count, USHORT *buffer)

Arguments devNum – The device to be accessed (0-3)
channel - The channel number (0-15)
count - The number of desired conversions.
buffer - A pointer to an array of count elements to hold the results

Return 0 = conversions complete
1 = an error occurred. See mio_error_code.

Description The function allows for repetitive high-speed conversions on a
single channel. The array pointer buffer must be of sufficient size to
hold the results, i.e. count elements long. The absolute maximum
count is 65536. Counts from 2 to 16384 are more realistic. The
values are returned in the array in 16-bit integers which are signed
or unsigned dependent upon the channel mode used. Vales may
be converted to volts using the adc_convert_to_volts function.

adc_convert_to_volts – Convert a raw ADC value to voltage

Prototype float adc_convert_to_volts(int devNum, int channel, USHORT
value)

Arguments devNum – The device to be accessed (0-3)
channel – The channel number (0-15) from which value was read
value – The 16-bit raw converter returned value

Return A floating point value representing the value provided and
dependent on the current range setting of the specified channel.

Description This function does nothing with the MIO hardware and makes no
call to the driver. It is simply a math routine which according to the
current mode set by a channel during set_channel_mode and the
supplied vale calculates and returns the current voltage as a
floating point value.

adc_get_channel_voltage - Get Channel Voltage
Prototype float adc_get_channel_voltage(int devNum, int channel)

Arguments devNum – The device to be accessed (0-3)
channel - The channel to be converted (0-15)

Return A Floating point value = to voltage at channel input pin. Only valid if
mio_error_code == 0.

Description This function like adc_auto_get_channel_voltage returns the

 PCM-MIO-G Windows Device Driver Package

11/16/2011 6

Rev 3.0

voltage on the specified channel's input pin. The value returned is
only valid for the range specified with a preceding
adc_set_channel_mode. Unlike the auto-ranging version, this
function can be used with differential input signals.

adc_read_conversion_data – Read the ADC output register
Prototype USHORT adc_read_conversion_data(int devNum, int channel)

Arguments devNum – The device to be accessed (0-3)
channel – The channel number (0-15)

Return A raw 16-bit value from the ADC’s output register

Description The function reads out the data from the second to last conversion.
It is important to recognize that with each conversion the converter
delivers the data from the previous conversion meaning that if a
current reading is required it's necessary to do two conversions.
Look at the source code for the sample programs to see how this is
accomplished.

adc_read_status – Read the ADC status register

Prototype UCHAR adc_read_status(int devNum, int adc_num)

Arguments devNum – The device to be accessed (0-3)
adc_num – The ADC number (0-1)

Return 8-Bit unsigned status register content

Description The function is used internally by a number of other ADC functions.
It is normally not used by application code. Refer to the PCM-MIO
operations manual for bit definitions for this register.

adc_set_channel_mode - Set Channel input mode and range

Prototype int adc_set_channel_mode(int devNum, int channel, int
input_mode, int duplex, int range)

Arguments devNum – The device to be accessed (0-3)
channel - The channel number to set (0-15)
input_mode - Input type
 ADC_SINGLE_ENDED
 ADC_DIFFERENTIAL
duplex - The swing of the input voltage
 ADC_UNIPOLAR
 ADC_BIPOLAR
range - The input voltage top end
 ADC_TOP_5V
 ADC_TOP_10V

 PCM-MIO-G Windows Device Driver Package

11/16/2011 7

Rev 3.0

Return 1 = An argument error occurred. Check mio_error_code.
0 = Function completed successfully.

Description This function is used to set the input mode for a given channel.
Once a channel's mode has been set it will remain until changed or
until the application exits. The mode must be set before making any
conversion calls except for adc_auto_get_channel_voltage which
will change the mode to the one most appropriate for the current
input.

adc_start_conversion - Start a conversion on a channel

Prototype int adc_start_conversion(int devNum, int channel)

Arguments devNum – The device to be accessed (0-3)
channel - The channel number (0-15)

Return 0 = Conversion started
1 = Error occurred, check mio_error_code.

Description This function starts an A/D conversion on the specified channel
number and returns immediately.

adc_wait_ready - Wait for conversion complete

Prototype int adc_wait_ready(int devNum, int channel)

Arguments devNum – The device to be accessed (0-3)
channel – The channel number (0-15)

Return 0 = The converter is idle and ready for a new command
1 = An error occurred. Check mio_error_code.

Description This function is used to wait for conversions to complete. It reads
the status port until the conversion is complete or a timeout error
occurs.

disable_adc_interrupt – Disable ADC interrupt generation

Prototype int disable_adc_interrupt(int devNum, int adc_num)

Arguments devNum – The device to be accessed (0-3)
adc_num – ADC number (0-1)

Return 0 = no error occurred
1 = an error occurred, check mio_error_code

Description This function turns off the interrupt generation capability at the
specified ADC. Interrupt processing consumes processor interrupts
so if ADC event handling is not being used the interrupts should be
disabled. The internal ADC functions do not use interrupts for their
functionality.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 8

Rev 3.0

enable_adc_interrupt – Enable ADC interrupt generation

Prototype int enable_adc_interrupt(int devNum, int adc_num)

Arguments devNum – The device to be accessed (0-3)
adc_num – The ADC number (0-1)

Return 0 = no error occurred
1 = and error occurred, check mio_error_code.

Description This function enables hardware interrupts at the specified ADC. An
error is returned if there is no IRQ assigned to the driver. The
default ADC handler simply clears the interrupt and returns. It
serves no purpose unless an event has been registered with the
set_adc_event function in which case the default thread will signal
the event when the ADC interrupt occurs. All of the internal ADC
routines do not use interrupts. Interrupts should be enabled only if
the event notification service will be used by the application.

set_adc_event – Enable interrupt notification

Prototype int set_adc_event(int devNum, int adc_num, HANDLE adc_event)

Arguments devNum – The device to be accessed (0-3)
adc_num – The ADC number (0-1)
adc_event – a Handle to a Windows event

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function enables event notification through the adc_event
argument. A calling thread may now wait on that event which will
be signaled when an interrupt occurs on the specific controller.
Note: A call to enable_adc_interrupt must precede this one or no
notification will take place. It’s a good practice to call this function
with NULL as a HANDLE argument before the calling program
exits.

write_adc_command – Write command byte to the ADC

Prototype int write_adc_command(int devNum, int adc_num, UCHAR value)

Arguments devNum – The device to be accessed (0-3)
adc_num – The ADC number (0-1)
value – 8-bit command value for ADC

Return 0 = No error occurred.
1 = An error occurred, check mio_error_code

Description This function is used internally to build and send proper command
bytes to the specified ADC. It has no practical use in applications

 PCM-MIO-G Windows Device Driver Package

11/16/2011 9

Rev 3.0

code. The function adc_start_conversion calls this function using
values specified in the adc_set_channel_mode call to build the
command byte.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 10

Rev 3.0

Analog Input Samples

Also included with the library are four ADC sample application programs which utilize the

functions in the library. They range in complexity from very simple to much more complex.

There is extensive commenting within the sample applications to facilitate understanding of their

usage.

GETVOLT.EXE

GETVOLT.CPP is the source for this sample application. This sample utilizes the highest level

function in the library and for a large number of users will be the only function required from the

library.

It is invoked at the command line as:

 getvolt d c

Argument d is a value from 0 to 3 indicating the device to access and c is a value from 0 to 15

indicating the channel number to convert. The voltage on that channel is then displayed.

Internally the code calls the high-level function.

 adc_auto_get_channel_voltage(int devNum, int channel);

This function is an auto ranging function in that it starts out by making a measurement in a ±10V

scale, checking the result to see if a more precise value could be obtained by changing scales and

if so, making another measurement at the more precise range and returning a floating point

voltage to the caller. If absolute speed is not important this is the easiest way to make a reading

on a channel.

This function was coded for single-ended usage only. Differential inputs would need to set a

mode and scale and use the non auto ranging function adc_get_channel_voltage.

GETALL.EXE

GETALL.CPP is the source for this sample application. This application uses the

adc_convert_all_channels function call to get a snapshot of all of the 8 channels with one call.

Unlike adc_auto_get_channel_voltage and adc_get_channel_voltage, the data is returned not in

floating point but in an array of raw 16-bit values ranging from 0000H to FFFFH. The program

extracts the values one by one from the array, converts them to floating point, and then displays

the results. Also note that since this is not an auto ranging function it is necessary to call

adc_set_conversion_mode for each channel to tell the software the input mode, and range desired.

In this sample all channels were set to the same mode but there is no requirement that they all be

the same.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 11

Rev 3.0

REPEAT.EXE

REPEAT.CPP is the source for this sample application. This application demonstrates the usage

of the adc_convert_single_repeated function call.

This application is supplied in its source form getvolt.cpp. It is invoked at the command line as:

 repeat d c

Argument d is a value from 0 to 3 indicating the device to access and c is a value from 0 to 15

indicating the channel number to convert. Internally the code calls the high-level function

prototyped as:

int adc_convert_single_repeated(int devNum, int channel, unsigned count,
unsigned *buffer);

The channel number argument is fairly obvious. The count value is the number of conversions

we want to take on this channel and buffer is a pointer to an array large enough to hold the

number of samples requested. Upon return the buffer array will hold count number of

conversions which are once again provided in 16-bit values. This sample requests 2000 samples

at a time. Once the data is back, it is element by element converted to floating point, displayed

and compared against previous minimum and maximum values. Pressing the 'C' key clears the

counts and min/max values and pressing 'N' steps to the next channel. Any other key exits the

program.

BUFFERED.EXE

BUFFERED.CPP is the source for this sample application. This sample uses the

adc_buffered_channel_conversions call to program a series of high-speed conversions with the

results being stored in a specified buffer. The function prototype is:

adc_buffered_channel_conversions(int devNum, unsigned char
*input_channel_buffer, unsigned *buffer);

The input_channel_buffer is an array of channel numbers built by the user as a to-do list of

conversions. It is terminated with a 0FFH value. The buffer array must be large enough to hold

the requested number of conversions. In our sample we load the input_channel_buffer with zero

500 times, one 500 times, two 500 times, and three 500 times for a total of 2000 conversions.

Actually our input_channel_buffer is 2001 characters long to make space for the terminating 0ffh

character. The output buffer is 2000 unsigned integers long which will hold the results. Upon

return from this function we have 500 conversions each on the first 4 channels. The program

sorts them out, converts them to voltages and displays the values. Any key press exits the

program.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 12

Rev 3.0

Analog Output Functions

buffered_dac_output – Send programmed values to the DAC(s)

Prototype int buffered_dac_output(int devNum, UCHAR *cmd_buff, USHORT
*data_buff)

Arguments devNum – The device to be accessed (0-3)
cmd_buff – Pointer to an 0xff terminated array of channel numbers
Data_buff – Pointer to an equal element array of data values for
the DAC(s)

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function reads the cmd_buff array, which holds channel
numbers, until a 0xff character is read. For each element in the
cmd_buff array the corresponding element in the data_buff array is
read and sent to the corresponding DAC channel. The function
returns when all values have been sent or upon an error condition.

dac_read_status – Read the DAC status register

Prototype UCHAR adc_read_status(int devNum, int dac_num)

Arguments devNum – The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)

Return 8-Bit unsigned status register content

Description The function is used internally by a number of other DAC functions.
It is normally not used by application code. Refer to the PCM-MIO
operations manual for bit definitions for this register.

disable_dac_interrupt – Disable DAC interrupt generation

Prototype Prototype : int disable_dac_interrupt(int devNum, int dac_num)

Arguments devNum – The device to be accessed (0-3)
dac_num – DAC controller number (0-1)

Return 0 = no error occurred
1 = an error occurred, check mio_error_code.

Description This function turns off the interrupt generation capability at the
specified DAC controller. Interrupt processing consumes processor
interrupts so if DAC event handling is not being used the interrupts
should be disabled. The internal DAC functions do not use
interrupts for their functionality.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 13

Rev 3.0

enable_dac_interrupt – Enable DAC interrupt generation

Prototype int enable_dac_interrupt(int devNum, int dac_num)

Arguments devNum – The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)

Return 0 = no error occurred
1 = and error occurred, check mio_error_code.

Description This function enables hardware interrupts at the specified DAC
controller. An error is returned if there is no IRQ assigned to the
driver. The default DAC handler simply clears the interrupt and
returns. It serves no purpose unless an event has been registered
with the set_dac_event function in which case the default thread
will signal the event when the DAC interrupt occurs. All of the
internal DAC routines do not use interrupts. Interrupts should be
enabled only if the event notification service will be used by the
application.

set_dac_event – Enable DAC interrupt notification

Prototype int set_dac_event(int devNum, int dac_num, HANDLE dac_event)

Arguments devNum – The device to be accessed (0-3)
dac_num – The DAC converter number (0-1)
dac_event – a Handle to a Windows event

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function enables event notification through the dac_event
argument. A calling thread may now wait on that event which will
be signaled when an interrupt occurs on the specific controller.
Note: A call to enable_dac_interrupt must precede this one or no
notification will take place. It’s a good practice to call this function
with NULL as a HANDLE argument before the calling program
exits.

set_dac_output – Output a value to a DAC channel

Prototype int set_dac_output(int devNum, int channel, USHORT dac_value)

Arguments devNum – The device to be accessed (0-3)
channel - DAC channel number (0-8)
dac_value – A 16-bit value to be sent to the DAC

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function sends the specified 16-bit value to the DAC channel
number specified. The voltage this value represents is dependent

 PCM-MIO-G Windows Device Driver Package

11/16/2011 14

Rev 3.0

upon the range set up with a previous call to set_dac_span. This
function is usually not called by application code which may more
easily use the higher level function set_dac_voltage.

set_dac_span – Set a DAC channel’s output range

Prototype int set_dac_span(int devNum, int channel, UCHAR span_value)

Arguments devNum – The device to be accessed (0-3)
channel – The DAC channel number (0-15)
span_value – An 8-bit argument of one of the following:
 DAC_SPAN_UNI5 0 to 5 Volt scale, Unipolar
 DAC_SPAN_UNI10 0 to 10 Volt scale, Unipolar
 DAC_SPAN_BI5 +/- 5 Volt scale, Bipolar
 DAC_SPAB_BI10 +/-10 Volt scale, Bipolar
 DAC_SPAN_BI2 +/-2.5 Volt scale, Bipolar
 DAC_SPAN_BI7 -2.5 to +7.5 Volt scale, Bipolar

Return 0 = No error occurred.
1 = An error occurred, check mio_error_code.

Description This function sets the output range on the specified channel. It will
affect the current output level by using the current DAC value in the
new scale range.

set_dac_voltage – Set a DAC channel output to a voltage

Prototype int set_dac_voltage(int devNum, int channel, float voltage)

Arguments devNum – The device to be accessed (0-3)
channel – The DAC channel number (0-7)
voltage - The desired output voltage (-10.0 to +10.0)

Return 0 = no error occurred.
1 = an error occurred, check mio_error_code.

Description This function sets the specified DAC output channel to the
requested voltage. The set_dac_span call is made first to give the
most precise range available for the requested voltage. NOTE: It is
possible to get a spike (up or down) in voltage as the range value is
programmed and until the new value is output. If this is of critical
concern it will be necessary to set up the range at an appropriate
time, leave it as-is, and output values directly using
set_dac_output.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 15

Rev 3.0

wait_dac_ready - Wait for DAC Controller to be ready

Prototype int wait_dac_ready(int devNum, int channel)

Arguments devNum – The device to be accessed (0-3)
channel – The DAC channel number (0-7)

Return 0 = The controller is idle and ready for a new command
1 = An error occurred. Check mio_error_code.

Description This function is used to wait for output shifts to complete. It reads
the status port until the controller ready or a timeout error occurs.

write_dac_command – Write command byte to DAC controller

Prototype : int write_dac_command(int devNum, int dac_num, UCHAR value)

Arguments devNum – The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)
value – The 8-bit command value

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function is used internally to issue commands to the DAC
controller. The command bytes are makeup of commands,
channels, and command parameters. Refer to the Linear
Technology’s DAC datasheet for more details. Applications should
never need to access this function directly.

write_dac_data – Write Data to DAC controller

Prototype : int write_dac_data(int devNum, int dac_num, USHORT value)

Arguments devNum – The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)
value – The 16-bit data value to be sent to the DAC controller

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function is used internally to pass the 16-bit data value to the
controller. This is NOT sufficient to update a DAC output voltage.
The data must be followed by a command indicating, span,
channel, etc. This function should never be needed by applications
code.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 16

Rev 3.0

Analog Output Samples

Also included with the library are two DAC sample application programs which utilize the

functions in the library. There is extensive commenting within the sample applications to

facilitate understanding of their usage.

DACOUT.EXE

DACOUT.CPP is the source for this sample application. This sample utilizes the highest level

function in the library and for a large number of users will be the only DAC function required

from the library.

It is invoked at the command line as:

 dacout device channel voltage

Device is the board to be accessed from 0 to 3. Channel is a value from 0 to 7 indicating the

DAC channel number to update. The voltage argument can be from -10.0 Volts to +10.0 volts.

The specified voltage is output on the desired channel. Within dacout.cpp the code calls the

high-level function.

 set_dac_voltage(int devNum, int channel, float voltage);

This function is an auto ranging function, in that it examines the voltage parameter, and chooses

an output range that will give the most precise output and then sets the output voltage as

specified. Using this function is the easiest way to update the voltage on a channel.

DACBUFF.EXE

DACBUFF.CPP is the source for this sample application. This application revolves around use

of the buffered_dac_output function call. It is run at the command line and there is no screen

output while running. Pressing any key will exit the program. This program fills two arrays, the

first with channel numbers and the second with values for the corresponding channel indices. In

this program only channel 0 is used and the voltage steps from -10V to +10V in 4 count

increments. Use an oscilloscope on channel 0 of the DAC output connector to view the results.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 17

Rev 3.0

Digital I/O (DIO) Functions

DIO functions note: The registers and the actual I/O pins on the chip are inverted from each

other. The DIO functions refer to the registers to avoid confusion when programming, but it’s

important to realize that setting a bit causes the actual output pin to go low and clearing a bit

releases the output to be pulled high by the onboard pull-up resisters. Also note that bits must be

cleared in order to use them as inputs.

dio_clr_bit – Clear a DIO register bit

Prototype : int dio_clr_bit(int devNum, int bit_number)

Arguments devNum – The device to be accessed (0-3)
bit_number – The bit number (1-48)

Return 0 = no error occurred
1 = An error occurred, check mio_error_code.

Description This function clears the specified bit in the DIO data register for that
bit. This causes the output pin to go high.

dio_clr_int - Clear a pending event sense interrupt

Prototype int dio_clr_int(int devNum, int bit_number)

Arguments devNum – The device to be accessed (0-3)
bit_number – The bit number (1-24)

Return 0 = No error occurred.
1 = An error occurred, check mio_error_code.

Description This function is used to clear a pending interrupt on a bit_number
that was obtained from the dio_get_int function call. A bit interrupt
that is not cleared cannot generate additional interrupts until the
interrupt is cleared.

dio_disab_bit_int – Disable event sense interrupts on a bit

Prototype int dio_disab_bit_int(int devNum, int bit_number)

Arguments devNum – The device to be accessed (0-3)
bit_number – The bit number (1-24)

Return 0 = No error occurred.
1 = An error occurs, check mio_error_code

Description This function disables the event sense interrupt generation on the
specified bit.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 18

Rev 3.0

dio_enable_bit_int – Enable event sense interrupts on a bit

Prototype int dio_enable_bit_int(int devNum, int bit_number, int polarity)

Arguments devNum – The device to be accessed (0-3)
bit_number – The bit number (1-24)
polarity – The specified interrupt polarity:
 RISING
 FALLING

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function enable event sense interrupts on a specific bit with
the specified polarity. NOTE: The polarity argument in this case is
from the PIN perspective. Specifying RISING for polarity will
generate a bit interrupt when the voltage on the input pin RISES
from a low to a high. Actual interrupts will not be generated by the
dio section unless a call to enable_dio_interrupt has been made
and a call to set_dio_event is required to be notified of the event
sense interrupt. If these two calls are not made, it’s still possible to
poll for events using dio_get_int after the dio_enable_bit_int call.

dio_get_int – Get highest priority event sense interrupt pending

Prototype int dio_get_int(int devNum)

Arguments devNum – The device to be accessed (0-3)

Return 0 = No interrupt pending
1-24 – The bit number of the highest priority pending interrupt
Valid only when mio_error_code == 0.

Description This function returns the bit number of the highest priority bit that
has a pending event sense interrupt. Priorities are from bit 1
(highest) to bit 24 (lowest). A zero is returned upon error or when
there are no further interrupts pending. Event sense handler code
should repeatedly call this routine until a zero was returned so that
all pending bit interrupts can be handled appropriately. In addition,
handler code should call dio_clr_int with each bit number returned
in order to clear and rearm the interrupt. Failure to follow these
guidelines may result in a system that fails to respond to any
additional events.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 19

Rev 3.0

dio_init_io – Initialize DIO subsystem and driver

Prototype int dio_init_io(int devNum)

Arguments devNum – The device to be accessed (0-3)

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function performs several dio related tasks. First it clears all
dio bits and sets the internally used image registers to 0. It then
clears all interrupt enables on all of the 24 event sense bits. This
function is not normally called by application code. This function is
executed automatically when an application opens the mio device
driver. The ramification of this action is that if two applications are
both using the dio functions that the second one to load will perform
this init which may affect dio operations that the first application had
already performed.

dio_read_bit – Read a DIO bit value

Prototype int dio_read_bit(int devNum, int bit_number)

Arguments devNum – The device to be accessed (0-3)
bit_number – The bit number (1-48)

Return 0 = Bit register = 0
1 = Bit register = 1
Valid only if mio_error_code == 0.

Description This function is used to either read an input bit or to read back the
state of an output. Again note the inversion that takes place i.e. if
an input pin is pulled low it will reflect as a 1 when the register bit is
read.

dio_set_bit – Set DIO register bit

Prototype int dio_set_bit(int devNum, int bit_number)

Arguments devNum – The device to be accessed (0-3)
bit_number – The bit number (1-48)

Return 0 = No error occurred.
1 = An error occurred, check mio_error_code.

Description This function sets the specified bit in the appropriate dio output
register. Because of inversion, setting a bit causes the output pin to
go low. A bit cannot be used for input when set. Use clr_bit to
enable a pin for input.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 20

Rev 3.0

io_write_bit – Write a DIO register bit

Prototype int dio_write_bit(int devNum, int bit_number, int val)

Arguments devNum – The device to be accessed (0-3)
bit_number – The bit number (1-48)
val – The desired bit value (0 or 1)

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function provides an alternate to the dio_set_bit and the
dio_clr_bit functions. Writing a 1 is the same as dio_set_bit and
writing a 0 is the same as dio_clr_bit. Refer to those two functions
for additional details.

disable_dio_interrupt – Disable DIO module interrupts

Prototype int disable_dio_interrupt(int devNum)

Arguments devNum – The device to be accessed (0-3)

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function disables the DIO module on the board from
generating any physical interrupts.

enable_dio_interrupt – Enable DIO module interrupts

Prototype int enable_dio_interrupt(int devNum)

Arguments devNum – The device to be accessed (0-3)

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function enables physical interrupts in the DIO section of the
hardware. This is only the first of the three steps necessary to
obtain notification of event sense interrupts. The second step is
multiple calls to dio_enable_bit_int for all bits to be monitored. Third
a call to set_dio_event is necessary to signal an application when
an event occurs. The order of these calls is not important but all
three are required. The sample program ints.exe shows the usage
all three of these functions. Note that an error occurs if there is no
IRQ resource assign to the board.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 21

Rev 3.0

read_dio_byte – Read an 8-Bit DIO register

Prototype UCHAR read_dio_byte(int devNum, int offset)

Arguments devNum – The device to be accessed (0-3)
offset – The DIO register number (0-10)

Return The 8-bit register contents
Valid only if mio_error_code == 0.

Description This function allows direct reading of any of the 10 DIO data and
control registers. This function is used internally and its use except
for reading the first 6 ports (The actual data ports) is highly
discouraged. Refer to the PCM-MIO operations manual for the DIO
register and bit definitions.

set_dio_event – Enable DIO interrupt notification

Prototype int set_dio_event(int devNum, HANDLE dio_event)

Arguments devNum – The device to be accessed (0-3)
dio_event – a Handle to a Windows event

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function enables event notification through the dio_event
argument. A calling thread may now wait on that event which will
be signaled when an interrupt occurs on a dio bit which has been
enabled for event sense interrupts.
Note: Calls to enable_dio_interrupt and dio_enable_bit_int must
also be made or no notification will take place. It’s a good practice
to call this function with NULL as a HANDLE argument before the
calling program exits.

write_dio_byte – Write a byte to a DIO register

Prototype int write_dio_byte(int devNum, int offset, UCHAR value)

Arguments devNum – The device to be accessed (0-3)
offset – DIO register number (0-10)
value – An 8-bit value to write to the register

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function allows write access to any of the 10 control and data
registers of the DIO section of the board. This function is used
internally by the other dio functions. Its use by applications is highly
discouraged and may result in incorrect operation of other functions
if used outside of the driver environment.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 22

Rev 3.0

DIO Sample Programs

Also included with the library are three DIO sample application programs which utilize the

functions in the library. There is extensive commenting within the sample applications to

facilitate understanding of their usage. All programs are configured for device zero. If another

device is desired, update the DEVNUM definition before building each program.

FLASH.EXE

FLASH.CPP is the source for the first sample console application. This sample uses the

dio_set_bit and the dio_clr_bit functions to successively flash each bit low and then high. The

output can be examined with an oscilloscope or with LEDs. There is no screen display while

running. Pressing any key exits the program.

POLL.EXE

POLL.CPP is the source code for the second sample console application. This sample program

enables bit sense interrupts on the first 24 lines and then polls for events to occur using the

dio_get_int function. It tallies events per pin. A simple way to generate events is to take a small

screwdriver and short an input pin to the adjacent ground pin. Pressing any key exits the

program.

INTS.EXE

INTS.CPP is the source code for the third sample console application. This sample program

enables bit sense interrupts on the first 24 lines. It also enables DIO board interrupts and installs

an event and an event thread to receive the interrupt notification. In this simple demonstration the

event thread simply counts the interrupts and clears them and then goes back to sleep awaiting

more events. Pressing any key will exit the program. Examining the source code will provide

more details.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 23

Rev 3.0

MIO Support Functions

MIO functions note: All of these functions are used internally by the support library mio_io.dll.

There should normally never be a reason for application code to call any of these functions

directly. They are documented here for completeness and for the very rare occurrence where

access to the low level functions may be required.

mio_enable_event_handling – Enable MIO event handling

Prototype int mio_enable_event_handling(int devNum, HANDLE *event)

Arguments devNum – The device to be accessed (0-3)
event – Pointer to a Windows event handle

Return 0 = no error occurred
1 = and error occurred, check mio_error_code.

Description This function is called with the event as NULL internally by any of
the module event initialization code to create an event that is
passed directly to the kernel driver for notification. The internal
thread handler sorts out the interrupts by module and signals
function specific events. If this function is called with a valid event
handle the normal event handling is bypassed and the caller will be
notified of any interrupt of any type occurring on the board. It will be
up to the caller to sort them out and handle them appropriately.

mio_open_device – Open the kernel device driver

Prototype int mio_open_device(int devNum)

Arguments devNum – The device to be accessed (0-3)

Return 0 = no error occurred
1 = An error occurred, check mio_error_code.

Description This call is used to obtain a handle into the kernel device driver
pcmmio.sys. This handle is used by mio_io.dll to make the device
IOCTL calls into the kernel driver. This function is called
automatically whenever the first call to the library is made. A side
effect of this is when a second application accesses the driver for
the first time the open call is again executed. This in itself is not a
problem but the dio subsystem is also initialized with the open and
may cause dio functions to not perform as expected as the
hardware has been reinitialized.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 24

Rev 3.0

mio_read_irq_assigned – Get IRQ assignment from kernel driver
Prototype int mio_read_irq_assigned(int devNum)

Arguments devNum – The device to be accessed (0-3)

Return 0,3,4,5,6,7,9,10,11,12,14,15 = IRQ assigned.
Valid only if mio_error_code == 0.

Description This function retrieves the IRQ assignment from the kernel driver.
If no IRQ has been assigned a zero is returned otherwise the IRQ
is equal to the return value. This value is used to program the
individual sections for the actual hardware interrupt assigned.

mio_read_reg - Read an MIO register

Prototype UCHAR mio_read_reg(int devNum, int offset)

Arguments devNum – The device to be accessed (0-3)
offset – MIO register number (0 – 26)

Return 8-bit register contents
Valid only if mio_error_code == 0.

Description This function allows reading any of the 27 different registers within
the PCM-MIO board. This includes ADC, DAC, DIO, and a number
of control registers. Refer to the PCM-MIO operations manual for
register and bit definitions.

mio_write_reg – Write to an MIO register

Prototype int mio_write_reg(int devNum, int offset, UCHAR value)

Arguments devNum – The device to be accessed (0-3)
offset - MIO register number (0-26)
value - 8-bit value to write

Return 0 = No error occurred
1 = An error occurred, check mio_error_code.

Description This function allows write access to all 27 mio registers including
ADC, DAC, DIO and a number of control registers. This function is
extremely powerful and its careless use can result in system lock
ups, crashes, or incorrect operation of the various mio support
functions. Refer to the PCM-MIO operations manual for register
and bit definitions.

 PCM-MIO-G Windows Device Driver Package

11/16/2011 25

Rev 3.0

MIO Sample Program

There is one sample program provided at the board-wide level. It is a true Windows MFC

application that interfaces to the driver allowing control and status of all three sections of the

PCM-MIO. The program mio_demo.exe is provided in executable format only.

This program shows all three of the major sections. In the upper left corner, the 16 analog inputs

are scanned every 25ms and the display is updated. In the upper middle we have the 8 Analog

output windows. Typing a value into a window and then clicking the appropriate “update” button

will update the DAC channel to the specified voltage. In the upper right, the desired device to

access is selected. If a non-existent device is selected, the program will terminate. Along the

bottom, the 48 digital I/O lines are represented. They are displayed from the reference of the

actual pin on the connector, so when the dot is low, the pin is low. To change the state of a pin,

simply click on the desired state. In the display above we had a jumper wire from Device 2 DAC

channel 2 to Device 2 ADC channel 8 so anything that was output on DAC channel 2 showed up

on ADC channel 8.

