

3/20/2014 1

Rev 3.1

PCM-MIO Device Driver Package

2.6.38 Kernel-Based Linux

1 Introduction

1.0 The PCM-MIO Device Driver Package consists of a Linux Device Driver, an application

programming interface library, and example application programs.

1.1 This driver has been built and tested on two different Linux Kernels:

� 2.6.38-16 running the Ubuntu 11.04 Natty Narwhal distribution

� 3.2.0-29 running the Ubuntu 12.04 Precise Pangolin distribution

1.2 The driver supports the WinSystems' PCM-MIO board, including Analog to Digital (A2D),

Digital to Analog (DAC) and Digital I/O (DIO).

1.3 This driver is provided 'as-is' and no warranty as to usability or fitness of purpose is

claimed.

1.4 WinSystems does not provide support for the modification of this driver. Bug reports may

be sent to linux_drivers@winsystems.com

1.5 This driver is provided under the terms of the GNU General Public License.

2 Installation and Build

2.0 The driver and the sample applications are provided in source code form as a compressed

zipped folder.

2.1 It will be necessary to become the root user to build the driver and the device node.

2.2 The MAJOR number for this device is allocated dynamically. A static number can be

assigned by editing the pcmmio_init_major variable at the beginning of pcmmio_ws.c.

2.3 To create the device driver Loadable Kernel Module and the sample applications in a

command shell execute: make all. The device driver Loadable Kernel Module pcmmio.ko is

created and moved to the appropriate kernel driver directory. The file access permissions are set

to allow access by all users and groups; they may be changed manually as desired. The nine

sample programs are also built.

make install will install the kernel driver to a kernel directory and create dependencies.

make uninstall will remove the kernel driver from the kernel directory.

 PCM-MIO Device Driver Package

3/20/2014 2

Rev 3.1

make clean will remove objects created by the build.

 make spotless will forcibly remove all artifacts of the build.

 make <appname> will crete the selected application.

2.3 The device driver can be loaded with the provided initialization script pcmmio_load or

manually. In either case modprobe is used to load the driver. Since the PCM-MIO board is not

plug-n-play and I/O probing could be problematic, it is required to specify the base address of

the device on the command line when loading the driver. A sample command line loading might

look like this:

modprobe pcmmio io=0x300 irq=5

2.4 This would install the driver with a base port of hex 300 using IRQ5. Interrupts are not

required for driver loading but none of the event sense or wait_xxx_int functions will be usable.

The internal routines for normal DIO bit operations and A2D and DAC functions do not require

interrupts.

2.5 The required pcmmio device nodes are also created in /dev when the pcmmio_load script is

executed. This file should be modified according to the devices installed. To load the driver

automatically at boot, add the pcmmio_load script to the /etc/rc.local file.

3 Driver Usage

3.0 The PCM-MIO is accessed in hardware as a byte oriented device. Therefore, the driver is

implemented as a character device. Using file I/O read, write, and seek operations although

crudely implemented for compatibility will NOT give the desired results. The driver was

designed for maximum flexibility using ioctl as its exclusive programming interface.

3.1 The file mio_io.o implements the ioctl interface and presents the application with a set of

standard C functions that may be called directly from the application without any further need

for dealing with or understanding of how to access the driver using ioctl. An application must

merely include mio_io.h and link to mio_io.o to provide this simple interface.

4 ‘C’ LANGUAGE LIBRARY

4.0 All of functions from mio_io.o are standard ‘C’ language functions. There are also two

global variables available to support error detection and handling. They are defined in mio_io.h

as:

 extern int mio_error_code;

 extern char mio_error_string[128];

The first is an integer holding the result code from that last function call. A non-zero value

indicates an error had occurred. The file mio_io.h also defines these error codes. In addition to

the error code, an error string, MIO_ERROR_STRING, is generated when an error occurs. This

string generally gives the function name and the error type that occurred.

 PCM-MIO Device Driver Package

3/20/2014 3

Rev 3.1

FUNCTION LIST

The supported function from mio_io.o will be broken down into four categories, three for the

three distinct functional modules on the board and a fourth for common use. The following list is

a complete list of functions sorted by category. Following the list each function will be described

in more detail by category.

================================

Analog Input Functions

================================

adc_auto_get_channel_voltage

adc_buffered_channel_conversions

adc_convert_all_channels

adc_convert_single_repeated

adc_convert_to_volts

adc_get_channel_voltage

adc_read_conversion_data

adc_read_status

adc_set_channel_mode

adc_start_conversion

adc_wait_ready

disable_adc_interrupt

enable_adc_interrupt

wait_adc_int

write_adc_command

================================

Analog Output Functions

================================

buffered_dac_output

dac_read_status

disable_dac_interrupt

enable_dac_interrupt

set_dac_output

set_dac_span

set_dac_voltage

wait_dac_int

wait_dac_ready

write_dac_command

write_dac_data

 PCM-MIO Device Driver Package

3/20/2014 4

Rev 3.1

================================

DIO Functions

================================

dio_clr_bit

dio_clr_int

dio_disable_bit_int

dio_enable_bit_int

dio_get_int

dio_read_bit

dio_set_bit

dio_write_bit

disable_dio_interrupt

enable_dio_interrupt

read_dio_byte

wait_dio_int

write_dio_byte

===============================

MIO Support Functions

===============================

mio_read_irq_assigned

mio_read_reg

mio_write_reg

 PCM-MIO Device Driver Package

3/20/2014 5

Rev 3.1

ANALOG INPUT FUNCTIONS

adc_auto_get_channel_voltage - Get Channel voltage auto ranging

Prototype float adc_auto_get_channel_voltage(int dev_num, int channel)

Arguments dev_num - The device to be accessed (0-3)
channel - The channel to be converted (0-15)

Return Floating point value = to voltage at input channel pin
If mio_error_code == 0

Description This function returns the voltage on the current input channel pin.
It works for single-ended inputs only. It could make as many as four
conversion requests before returning a final value. This function is
the simplest interface to the hardware.

adc_buffered_channel_conversions - Programmable conversion sequence

Prototype int adc_buffered_channel_conversions(int dev_num, unsigned
char*input_channel_buffer, unsigned short *buffer)

Arguments dev_num - The device to be accessed (0-3)
input_channel_buffer - Pointer to an array of channel numbers to
be converted. Terminated with 0ffH.
buffer - Pointer to an array of 16-bit values to receive the results

Return 0 = Conversions completed without error.
1 = Error Occurred. Check mio_error_code.

Description This function allows for high speed multiple channel conversions.
The input is an array of channel numbers in any order repetitive or
not, as desired. The function will start each conversion immediately
after completing the previous one without further application
intervention. The list is terminated with a 0ffH value. The buffer
argument should point to an adequately sized array to hold all of
the specified conversion results.

adc_convert_all_channels - Convert all channels

Prototype int adc_convert_all_channels(int dev_num, unsigned short *buffer)

Arguments Arguments : dev_num - The device to be accessed (0-3)
buffer - Pointer to a 16 element unsigned short array for return of
values.

Return 0 = All conversions complete without error.
1 = Error occurred. Check mio_error_code.

Description This function is used to snapshot all 16 channels as quickly as
possible. The results are stored in a 16-element array provided by

 PCM-MIO Device Driver Package

3/20/2014 6

Rev 3.1

the calling program. The values provided are 16-bits
(signed/unsigned) in length for each element. To convert the values
to voltage use the adc_convert_to_volts function.

adc_convert_single_repeated - Multiple conversions on a single channel

Prototype int adc_convert_single_repeated(int dev_num, int channel,
unsigned short count, unsigned short *buffer)

Arguments dev_num - The device to be accessed (0-3)
channel - The channel number (0-15)
count - The number of desired conversions.
buffer - A pointer to an array of count elements to hold the results

Return 0 = conversions complete
1 = Error occurred. Check mio_error_code.

Description The function allows for repetitive high-speed conversions on a
single channel. The array pointer buffer must be of sufficient size to
hold the results, i.e. count elements long. The absolute maximum
count is 65536. Counts from 2 to 16384 are more realistic. The
values are returned in the array in 16-bit integers which are signed
or unsigned dependent upon the channel mode used. Vales may
be converted to volts using the adc_convert_to_volts function.

adc_convert_to_volts – Convert a raw ADC value to voltage

Prototype float adc_convert_to_volts(int dev_num, int channel, unsigned short
value)

Arguments dev_num - The device to be accessed (0-3)
channel – The channel number (0-15) from which value was read
value – The 16-bit raw converter returned value

Return A floating point value representing the value provided and
dependent on the current range setting of the specified channel.

Description This function does nothing with the MIO hardware and makes no
call to the driver. It is simply a math routine which according to the
current mode set by a channel during set_channel_mode and the
supplied value calculates and returns the current voltage as a
floating point value.

 PCM-MIO Device Driver Package

3/20/2014 7

Rev 3.1

adc_get_channel_voltage - Get Channel Voltage

Prototype float adc_get_channel_voltage(int dev_num, int channel)

Arguments dev_num - The device to be accessed (0-3)
channel - The channel to be converted (0-15)

Return A Floating point value = to voltage at channel input pin.
Only valid if mio_error_code == 0.

Description This function like adc_auto_get_channel_voltage returns the
voltage on the specified channel's input pin. The value returned is
only valid for the range specified with a preceding
adc_set_channel_mode. Unlike the auto-ranging version, this
function can be used with differential input signals.

adc_read_conversion_data – Read the A2D output register

Prototype unsigned short adc_read_conversion_data(int dev_num, int
channel)

Arguments dev_num - The device to be accessed (0-3)
channel – The channel number (0-15)

Return A raw 16-bit value from the A2D converter’s output register

Description The function reads out the data from the second to last conversion.
It is important to recognize that with each conversion the converter
delivers the data from the previous conversion meaning that if a
current reading is required it's necessary to do two conversions.
Look at the source code for the sample programs to see how this is
accomplished.

adc_read_status – Read the A2D status register

Prototype unsigned char adc_read_status(int dev_num, int adc_num)

Arguments dev_num - The device to be accessed (0-3)
adc_num – The A2D controller number (0-1)

Return 8-Bit unsigned status register content

Description The function is used internally by a number of other A2D functions.
It is normally not used by application code. Refer to the PCM-MIO
operations manual for bit definitions for this register.

 PCM-MIO Device Driver Package

3/20/2014 8

Rev 3.1

adc_set_channel_mode - Set Channel input mode and range

Prototype int adc_set_channel_mode(int dev_num, int channel, int
input_mode, int duplex, int range)

Arguments dev_num - The device to be accessed (0-3)
channel - The channel number to set (0-15)
input_mode - Input type
 ADC_SINGLE_ENDED
 ADC_DIFFERENTIAL
duplex - The swing of the input voltage
 ADC_UNIPOLAR
 ADC_BIPOLAR
range - The input voltage top end
 ADC_TOP_5V
 ADC_TOP_10V

Return 0 = Function completed successfully.
1 = Error occurred. Check mio_error_code.

Description This function is used to set the input mode for a given channel.
Once a channel's mode has been set it will remain until changed or
until the application exits. The mode must be set before making any
conversion calls except for adc_auto_get_channel_voltage which
will change the mode to the one most appropriate for the current
input.

adc_start_conversion - Start a conversion on a channel

Prototype int adc_start_conversion(int dev_num, int channel)

Arguments dev_num - The device to be accessed (0-3)
channel - The channel number (0-15)

Return 0 = Conversion started.
1 = Error occurred. Check mio_error_code.

Description This function starts an A/D conversion on the specified channel
number and returns immediately.

adc_wait_ready - Wait for conversion complete

Prototype int adc_wait_ready(int dev_num, int channel)

Arguments dev_num - The device to be accessed (0-3)
channel – The channel number (0-15)

Return 0 = The converter is idle and ready for a new command
1 = An error occurred. Check mio_error_code.

Description This function waits for conversions to complete. It reads the status

 PCM-MIO Device Driver Package

3/20/2014 9

Rev 3.1

port until the conversion completes or a timeout error occurs.

disable_adc_interrupt – Disable A2D interrupt generation

Prototype int disable_adc_interrupt(int dev_num, int adc_num)

Arguments dev_num - The device to be accessed (0-3)
adc_num – A2D converter number (0-1)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function turns off the interrupt generation capability at the
specified A2D controller. Interrupt processing consumes processor
time so if ADC interrupt handling is not being used the interrupts
should be disabled. The internal ADC functions do not use
interrupts for their functionality.

enable_adc_interrupt – Enable A2D interrupt generation

Prototype int enable_adc_interrupt(int dev_num, int adc_num)

Arguments dev_num - The device to be accessed (0-3)
adc_num – The A2D converter number (0-1)

Return 0 = no error occurred
1 = An error occurred. Check mio_error_code.

Description This function enables hardware interrupts at the specified A2D
controller. An error is returned if there is no IRQ assigned to the
driver. The default A2D handler simply clears the interrupt, releases
any waiting threads, and returns. All of the internal A2D routines do
not use interrupts. Interrupts should be enabled only if wait_adc_int
will be used by the application.

wait_adc_int - Wait for an ADC interrupt to occur

Prototype int wait_adc_int(int dev_num, int adc_num)

Arguments dev_num - The device to be accessed (0-3)
adc_num - The ADC converter number (0-1)

Return 0 = Interrupt occurred.
1 = Error or other release signal. Check mio_error_code.

Description This function waits within the driver to be released on the
occurrence of an interrupt on the specified A2D controller. The
default handler clears, the interrupt, and releases waiting threads
only.

 PCM-MIO Device Driver Package

3/20/2014 10

Rev 3.1

write_adc_command – Write command byte to the A2D controller

Prototype int write_adc_command(int dev_num, int adc_num, unsigned char
value)

Arguments dev_num - The device to be accessed (0-3)
adc_num – The A2D converter number (0-1)
value – 8-bit command value for A2D.

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function is used internally to build and send proper command
bytes to the specified A2D controller. It has no practical use in
applications code. adc_start_conversion calls this function using
values specified in the adc_set_channel_mode call to build the
command byte.

 PCM-MIO Device Driver Package

3/20/2014 11

Rev 3.1

ANALOG INPUT SAMPLES

Also included with the library are four A2D sample application programs which utilize the

functions in the library. They range in complexity from very simple to much more complex.

There is extensive commenting within the sample applications to facilitate understanding of their

usage.

GETVOLT.EXE

The file getvolt.c is the source for sample application number one. This sample is shown first

because it utilizes the highest level function in the library and for a large number of users will be

the only function required from the library.

This application is supplied in its source form, getvolt.c. It is invoked at the command line as:

 ./getvolt d c

Where d is the device number from 0 to 3 and c is the channel number to convert from 0 to 15.

The voltage on that channel is then displayed. Internally the code calls the high-level function.

 adc_auto_get_channel_voltage(dev_num, channel);

This function is an auto ranging function in that it starts out by making a measurement in a ±10V

scale, checking the result to see if a more precise value could be obtained by changing scales and

if so, making another measurement at the more precise range and returning a floating point

voltage to the caller. If absolute speed is not important this is the easiest way to make a reading

on a channel.

NOTE: This function was coded for single-ended usage only. Differential inputs would need to

set a mode and scale and use the non auto ranging function adc_get_channel_voltage.

GETALL.EXE

The second application uses the adc_convert_all_channels function call to get a snapshot of all

of the 16 channels with one call. Unlike adc_auto_get_channel_voltage and

adc_get_channel_voltage, the data is returned not in floating point but in an array of raw 16-bit

values ranging from 0000H to FFFFH. The program extracts the values one by one from the

array, converts them to floating point, and then displays the results. Also note that since this is

not an auto ranging function it is necessary to call adc_set_conversion_mode for each channel to

tell the software the input mode, and range desired. In this sample all channels were set to the

same mode but there is no requirement that they all be the same.

 PCM-MIO Device Driver Package

3/20/2014 12

Rev 3.1

REPEAT.EXE

The third application demonstrates the usage of the adc_convert_single_repeated function call.

This call is prototyped as:

int adc_convert_single_repeated(int dev_num, int channel, unsigned count,
unsigned *buffer);

The dev_num argument specifies the device to be accessed. The channel number argument is

fairly obvious. The count value is the number of conversions we want to take on this channel and

buffer is a pointer to an array large enough to hold the number of samples requested. Upon return

the buffer array will hold count number of conversions which are once again provided in 16-bit

values. This sample requests 2000 samples at a time. Once the data is back, it is element by

element converted to floating point, displayed and compared against previous minimum and

maximum values. Pressing the 'C' key clears the counts and min/max values and pressing 'N'

steps to the next channel. Any other key exits.

BUFFERED.EXE

The fourth and final sample uses the adc_buffered_channel_conversions call to program a series

of high-speed conversions with the results being stored in a specified buffer. The function

prototype is:

adc_buffered_channel_conversions(int dev_num, unsigned char
*input_channel_buffer, unsigned short *buffer);

The input_channel_buffer is an array of channel numbers built by the user as a to-do list of

conversions. It is terminated with a 0FFH value. The buffer array must be large enough to hold

the requested number of conversions. In our sample we load the input_channel_buffer with zero

500 times, one 500 times, two 500 times, and three 500 times for a total of 2000 conversions.

Actually our input_channel_buffer is 2001 characters long to make space for the terminating 0ffh

character. The output buffer is 2000 unsigned short integers long which will hold the results.

Upon return from this function we have 500 conversions each on the first 4 channels. The

program sorts them out, converts them to voltages and displays the values. Any key press exits

the program.

 PCM-MIO Device Driver Package

3/20/2014 13

Rev 3.1

ANALOG OUTPUT FUNCTIONS

buffered_dac_output – Send programmed values to the DAC(S)

Prototype int buffered_dac_output(int dev_num, unsigned char *cmd_buff,
unsigned short *data_buff)

Arguments dev_num - The device to be accessed (0-3)
cmd_buff – Pointer to an 0xff terminated array of channel numbers
data_buff – Pointer to an equal element array of data values for
the DAC(S)

Return 0 = No error occurred
1 = An error occurred. Check mio_error_code.

Description This function reads the cmd_buff array, which holds channel
numbers, until a 0xff character is read. For each element in the
cmd_buff array the corresponding element in the data_buff array is
read and sent to the corresponding DAC channel. The function
returns when all values have been sent or upon an error condition.

dac_read_status – Read the DAC status register

Prototype unsigned char adc_read_status(int dev_num, int dac_num)

Arguments dev_num - The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)

Return 8-Bit unsigned status register content.
Valid only if mio_error_code == 0.

Description The function is used internally by a number of other DAC functions.
It is normally not used by application code. Refer to the PCM-MIO
operations manual for bit definitions for this register.

disable_dac_interrupt – Disable DAC interrupt generation

Prototype int disable_dac_interrupt(int dev_num, int dac_num)

Arguments dev_num - The device to be accessed (0-3)
dac_num – DAC controller number (0-1)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function turns off the interrupt generation capability at the
specified DAC controller. Interrupt processing consumes processor
cycles so if the DAC function wait_dac_int is not being used the
interrupt should be disabled. The internal DAC functions do not use
interrupts for their functionality.

 PCM-MIO Device Driver Package

3/20/2014 14

Rev 3.1

enable_dac_interrupt – Enable DAC interrupt generation

Prototype int enable_dac_interrupt(int dev_num, int dac_num)

Arguments dev_num - The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function enables hardware interrupts at the specified DAC
controller. An error is returned if there is no IRQ assigned to the
driver. The default DAC handler simply clears the interrupt and
returns. It serves no purpose unless the wait_dac_int function is
being used for interrupt handling. All of the internal DAC routines
do not use interrupts. Interrupts should be enabled only if the
wait_dac_int function will be used by the application.

set_dac_output – Output a value to a DAC channel

Prototype int set_dac_output(int dev_num, int channel, unsigned short
dac_value)

Arguments dev_num - The device to be accessed (0-3)
channel - DAC channel number (0-8)
dac_value – A 16-bit value to be sent to the DAC

Return 0 = No error occurred
1 = An error occurred. Check mio_error_code.

Description This function sends the specified 16-bit value to the DAC channel
number specified. The voltage this value represents is dependent
upon the range set up with a previous call to set_dac_span. This
function is usually not called by application code which may more
easily use the higher level function set_dac_voltage.

set_dac_span – Set a DAC channel’s output range

Prototype int set_dac_span(int dev_num, int channel, unsigned char
span_value)

Arguments dev_num - The device to be accessed (0-3)
channel – The DAC channel number (0-7)
span_value – An 8-bit argument of one of the following :
 DAC_SPAN_UNI5 0 to 5 Volt scale, Unipolar
 DAC_SPAN_UNI10 0 to 10 Volt scale, Unipolar
 DAC_SPAN_BI5 +/- 5 Volt scale, Bipolar
 DAC_SPAB_BI10 +/-10 Volt scale, Bipolar
 DAC_SPAN_BI2 +/-2.5 Volt scale, Bipolar
 DAC_SPAN_BI7 -2.5 to +7.5 Volt scale, Bipolar

 PCM-MIO Device Driver Package

3/20/2014 15

Rev 3.1

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function sets the output range on the specified channel. It will
affect the current output level by using the current DAC value in the
new scale range.

set_dac_voltage – Set a DAC channel output to a voltage

Prototype : int set_dac_voltage(int dev_num, int channel, float voltage)

Arguments dev_num - The device to be accessed (0-3)
channel – The DAC channel number (0-7)
voltage - The desired output voltage (-10.0 to +10.0)

Return 0 = no error occurred.
1 = An error occurred. Check mio_error_code.

Description This function sets the specified DAC output channel to the
requested voltage. The set_dac_span call is made first to give the
most precise range available for the requested voltage. NOTE: It is
possible to get a spike (up or down) in voltage as the range value is
programmed and until the new value is output. If this is of critical
concern it will be necessary to set up the range at an appropriate
time, leave it as-is, and output values directly using
set_dac_output.

wait_dac_int - Wait for DAC interrupt to occur

Prototype int wait_dac_int(int dev_num, int dac_num)

Arguments dev_num - The device to be accessed (0-3)
dac_num - The DAC converter number (0-1)

Return 0 = Interrupt occurred.
1 = An error occurred. Check mio_error_code.

Description This function waits within the driver to be released on the
occurrence of an interrupt on the specified DAC controller. The
default handler clears, the interrupt, and releases waiting threads
only.

wait_dac_ready - Wait for DAC Controller to be ready

Prototype int wait_dac_ready(int dev_num, int channel)

Arguments dev_num - The device to be accessed (0-3)
channel – The DAC channel number (0-7)

Return 0 = The controller is idle and ready for a new command.
1 = An error occurred. Check mio_error_code.

 PCM-MIO Device Driver Package

3/20/2014 16

Rev 3.1

Description This function is used to wait for DAC output shifts to complete. It
reads the status port until the controller ready or a timeout error
occurs.

write_dac_command – Write command byte to DAC controller

Prototype int write_dac_command(int dev_num, int dac_num, unsigned char
value)

Arguments dev_num - The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)
value – The 8-bit command value

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function is used internally to issue commands to the DAC
controller. The command bytes are makeup of commands,
channels, and command parameters. Refer to the Linear
Technology’s DAC datasheet for more details. Applications should
never need to access this function directly

write_dac_data – Write Data to DAC controller

Prototype int write_dac_data(int dev_num, int dac_num, unsigned value)

Arguments dev_num - The device to be accessed (0-3)
dac_num – The DAC controller number (0-1)
value – The 16-bit data value to be sent to the DAC controller

Return 0 = No error occurred
1 = An error occurred. Check mio_error_code.

Description This function is used internally to pass the 16-bit data value to the
controller. This is NOT sufficient to update a DAC output voltage.
The data must be followed by a command indicating, span,
channel, etc. This function should never be needed by applications
code.

 PCM-MIO Device Driver Package

3/20/2014 17

Rev 3.1

ANALOG OUTPUT SAMPLES

Also included with the library are two DAC sample application programs which utilize the

functions in the library. There is extensive commenting within the sample applications to

facilitate understanding of their usage.

DACOUT.EXE

The file dacout.c is the source for sample application number one. This sample is shown first

because it utilizes the highest level function in the library and for a large number of users will be

the only DAC function required from the library.

This application is supplied in its source form dacout.c. It is invoked at the command line as:

 ./dacout dev_num channel voltage

Where d is the device number from 0 to 3 and channel is a value from 0 to 7 indicating the DAC

channel number to update. The voltage argument can be from -10.0 Volts to +10.0 volts. The

specified voltage is output on the desired channel. Within dacout.c the code calls the high-level

function.

 set_dac_voltage(dev_num, channel, voltage);

This function is an auto ranging function, in that it examines the voltage parameter, and chooses

an output range that will give the most precise output and then sets the output voltage as

specified. Using this function is the easiest way to update the voltage on a channel.

DACBUFF.EXE

The file dacbuff.c is the source code for DAC sample application number two. This application

revolves around use of the buffered_dac_output function call. It is run at the command line and

there is no screen output while running. Pressing any key will exit the program. This program

fills two arrays, the first with channel numbers and the second with values for the corresponding

channel indices. In this program only channel 0 is used and the voltage steps from -10V to +10V

in 4 count increments. Use an oscilloscope on channel 0 of the DAC output connector to view

the results.

 PCM-MIO Device Driver Package

3/20/2014 18

Rev 3.1

DIGITAL I/O (DIO) FUNCTIONS

DIO functions note: The registers and the actual I/O pins on the chip are inverted from each

other. The DIO functions refer to the registers to avoid confusion when programming, but it’s

important to realize that setting a bit causes the actual output pin to go low and clearing a bit

releases the output to be pulled high by the onboard pull-up resisters. Also note that bits must be

cleared in order to use them as inputs.

dio_clr_bit – Clear a DIO register bit

Prototype int dio_clr_bit(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-48)

Return 0 = no error occurred.
1 = An error occurred. Check mio_error_code.

Description This function clears the specified bit in the DIO data register for that
bit. This causes the output pin to go high.

dio_clr_int - Clear a pending event sense interrupt

Prototype int dio_clr_int(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-24)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function clears a pending interrupt on a bit_number that was
obtained from the dio_get_int function call. A bit interrupt that is not
cleared cannot generate additional interrupts. In the Linux driver
once enabled, DIO sense interrupts are intercepted, buffered, and
cleared by the driver. It is only when polling for transition events
should application code need to call this function.

dio_disab_bit_int – Disable event sense interrupts on a bit

Prototype int dio_disab_bit_int(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-24)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function disables the event sense interrupt generation on the
specified bit.

 PCM-MIO Device Driver Package

3/20/2014 19

Rev 3.1

dio_enable_bit_int – Enable event sense interrupts on a bit

Prototype int dio_enable_bit_int(int dev_num, int bit_number, int polarity)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-24)
polarity – The specified interrupt polarity :
 RISING
 FALLING

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function enable event sense interrupts on a specific bit with
the specified polarity. NOTE: The polarity argument in this case is
from the PIN perspective. Specifying RISING for polarity will
generate a bit interrupt when the voltage on the input pin RISES
from a low to a high. Actual interrupts will not be generated by the
dio section unless a call to enable_dio_interrupt has been made. If
these two calls are not made, it’s still possible to poll for events
using dio_get_int after the dio_enable_bit_int call.

dio_get_int – Get highest priority event sense interrupt pending

Prototype int dio_get_int(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0 = No interrupt pending
1-24 – The bit number of the highest priority pending interrupt
 Valid only when mio_error_code == 0.

Description This function queries the kernel driver for a buffered DIO event
sense interrupt. If the driver has any buffered it delivers the number
of the oldest one in the queue. If there is nothing in the buffer, the
driver scans the hardware checking for a transition sense event.
This allows dio_get_int to be used with both interrupt processing
enabled or in a polled mode. A return of 0 indicates that there is no
event sense pending. In polled mode, events are prioritized such
that if multiple events are pending the lowest bit number with a
pending transition event will be returned. In either polled, or
interrupt mode, handler code should repeatedly call this function
until a zero is returned so that all events are handled. In polled
mode dio_clr_int should be called for each pending event.

 PCM-MIO Device Driver Package

3/20/2014 20

Rev 3.1

dio_read_bit – Read a DIO bit value

Prototype int dio_read_bit(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-48)

Return 0 = Bit register is 0
1 = Bit register is 1
Valid only if mio_error_code == 0.

Description This function is used to either read an input bit or to read back the
state of an output. Again note the inversion that takes place i.e. if
an input pin is pulled low it will reflect as a 1 when the register bit is
read.

dio_set_bit – Set DIO register bit

Prototype int dio_set_bit(int dev_num, int bit_number)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-48)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function sets the specified bit in the appropriate dio output
register. Because of inversion, setting a bit causes the output pin to
go low. A bit cannot be used for input when set. Use dio_clr_bit to
enable a pin for input.

dio_write_bit – Write a DIO register bit

Prototype int dio_write_bit(int dev_num, int bit_number, int val)

Arguments dev_num - The device to be accessed (0-3)
bit_number – The bit number (1-48)
val – The desired bit value (0 or 1)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function provides an alternate to the dio_set_bit and the
dio_clr_bit functions. Writing a 1 is the same as dio_set_bit and
writing a 0 is the same as dio_clr_bit. Refer to those two functions
for additional details.

 PCM-MIO Device Driver Package

3/20/2014 21

Rev 3.1

disable_dio_interrupt – Disable DIO module interrupts

Prototype int disable_dio_interrupt(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function disables the DIO module on the board from
generating any physical interrupts

enable_dio_interrupt – Enable DIO module interrupts

Prototype int enable_dio_interrupt(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0 = No error occurred.
1 = An error occurred. Check mio_error_code.

Description This function enables physical interrupts in the DIO section of the
hardware. This is only the first of the three steps necessary to
obtain notification of event sense interrupts. The second step is
multiple calls to dio_enab_bit_int for all bits to be monitored. Third a
call to wait_dio_int by an interrupt handling thread is necessary to
signal an application when an event occurs. The sample program
poll shows the usage all three of these functions. Note that an error
occurs if there is no IRQ resource assign to the board.

read_dio_byte – Read an 8-Bit DIO register

Prototype unsigned char read_dio_byte(int dev_num, int offset)

Arguments dev_num - The device to be accessed (0-3)
offset – The DIO register number (0-10)

Return The 8-bit register contents
Valid only if mio_error_code == 0

Description This function allows direct reading of any of the 10 DIO data and
control registers. This function is used internally and its use except
for reading the first 6 ports (The actual data ports) is highly
discouraged. Refer to the PCM-MIO operations manual for the DIO
register and bit definitions.

 PCM-MIO Device Driver Package

3/20/2014 22

Rev 3.1

wait_dio_int - Wait for DIO event sense interrupt to occur

Prototype int wait_dio_int(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0 = No Interrupt occurred. Thread signaled by system.
1 = An error occurred. Check mio_error_code.

Description This function waits within the driver to be released on the
occurrence of an interrupt on the DIO lines. The default handler
buffers, and clears, the interrupt, and releases waiting threads. This
function will not return an error when operating in polled mode, but
it will wait forever or until the parent process or the system
terminates it.

write_dio_byte – Write a byte to a DIO register

Prototype int write_dio_byte(int dev_num, int offset, unsigned char value)

Arguments dev_num - The device to be accessed (0-3)
offset – DIO register number (0-10)
value – An 8-bit value to write to the register

Return 0 = No error occurred.
1 = Error occurred. Check mio_error_code.

Description This function allows write access to any of the 10 control and data
registers of the DIO section of the board. This function is used
internally by the other dio functions. Its use by applications is highly
discouraged and may result in incorrect operation of other functions
if used outside of the driver environment.

 PCM-MIO Device Driver Package

3/20/2014 23

Rev 3.1

DIO SAMPLE PROGRAMS

Also included with the library are two DIO sample application programs which utilize the

functions in the library. There is extensive commenting within the sample applications to

facilitate understanding of their usage.

FLASH.EXE

The file flash.c is the source for sample application number one. This sample uses the

dio_set_bit and the dio_clr_bit functions to successively flash each bit low and then high. The

output can be examined with an oscilloscope or with LEDs. There is no screen display while

running. Pressing any key exits the program.

DIOTEST.EXE

The file diotest.c is the source code for the second sample application. This sample program uses

the write_dio_byte and dio_write_bit functions to alter the contents of a specified digital port.

The register contents are displayed after each alteration for verification.

POLL.EXE

The file poll.c is the source code for the third sample application. This sample program enable bit

sense interrupts on the first 24 lines. It also enables dio board interrupts and creates a concurrent

thread to receive the interrupt notification. In this simple demonstration the event thread simply

counts the interrupts and then goes back to waiting for more events. Pressing any key will exit

the program. Examining the source code will provide more details.

 PCM-MIO Device Driver Package

3/20/2014 24

Rev 3.1

MIO SUPPORT FUNCTIONS

MIO functions note: All of these functions are used internally by the support library mio_io.o.

They are documented here for completeness and for the very rare occurrence where access to the

low level functions may be required.

mio_read_irq_assigned – Get IRQ assignment from kernel driver

Prototype int mio_read_irq_assigned(int dev_num)

Arguments dev_num - The device to be accessed (0-3)

Return 0, 0x30 – 0x3f IRQ assigned. IRQ + 0x30
Valid only if mio_error_code == 0

Description This function retrieves the IRQ assignment from the kernel driver. If
no IRQ has been assigned, a zero is returned. This value is used to
program the individual board sections for the actual hardware
interrupt assigned.

mio_read_reg - Read an MIO register

Prototype unsigned char mio_read_reg(int dev_num, int offset)

Arguments dev_num - The device to be accessed (0-3)
offset – MIO register number (0 – 26)

Return 8-bit register contents
Valid only if mio_error_code == 0

Description This function reads any of the 27 registers within the PCM-MIO
board. Refer to the PCM-MIO operations manual for register and bit
definitions.

mio_write_reg – Write to an MIO register

Prototype int mio_write_reg(int dev_num, int offset, unsigned char value)

Arguments dev_num - The device to be accessed (0-3)
offset - MIO register number (0-26)
value - 8-bit value to write

Return 0 = No error occurred
1 = An error occurred. Check mio_error_code.

Description This function allows write access to all 27 MIO registers. This
function is extremely powerful and its careless use can result in
system lockups, crashes, or incorrect operation of the various MIO
support functions. Refer to the PCM-MIO operations manual for
register and bit definitions.

