WinSystems

Windows XP Embedded IO48 Digital I/O Driver Documentation

Supporting the

PCM-IO48 Digital I/O Device

Table of Contents
31
Introduction

31.1
Hardware Requirements

31.2
Host System Requirements

31.3
Driver Deliverables

32
Driver Integration

32.1
Driver Installation

42.2
Driver Files

42.3
Adding the Driver to your Configuration

53
Using the Driver

73.1
IOCTL_WIO_READ_BYTE

73.2
IOCTL_WIO_WRITE_BYTE

84
Appendix A: How To Modify The Component Registry Settings

84.1
Modifying the I/O Base Address and IRQ Values

84.2
WinSystems PCM-IO48 Digital I/O

104.3
Modifying the Registry Settings for Multiple Device Configurations

125
Appendix B: Ioctls.h

Introduction

The WinSystems PCM-IO48 is a highly versatile PC/104 input/output module providing 48 lines of digital I/O. The provided driver is a Windows XP Embedded driver that has been tested using the Windows XP Embedded Operating System Service Pack 1.

1.1 Hardware Requirements

· This driver has been designed to work with any x86 processor supported by Windows XP Embedded.

1.2 Host System Requirements

Your development machine should contain the following:

· Microsoft Windows Embedded Studio including Target Designer and Component Database Manager.

1.3 Driver Deliverables

IO48XP.zip

This zip file contains the WinSystems PCM-IO48 Driver and support files for the Windows XP Embedded Operating System.

IO48XPSource.zip

This zip file contains the source files for the WinSystems PCM-IO48 Driver for the Windows XP Embedded Operating System.

2 Driver Integration

2.1 Driver Installation

Step 1 Unzip the IO48XP.zip file into a folder on the computer containing the Microsoft Windows Embedded Studio development tools.

Step 2 Import the WinSystems PCM-IO48 Digital I/O component into the Component Database. Run the Component Database Manager program and on the Database tab, select Import…. The Import SLD dialog will then appear. Click the … button next to the SLD file: edit box and browse to the folder you unzipped the IO48XP.zip file in step 1 and select the “IO48XP.sld” file and click Open. You should not need to modify the default entry for the Repository root: field. Make sure that you have the Copy repository files to repository root checkbox checked so that the driver files will be copied into the Windows XP Embedded Component Database repository. Click Import to begin the import process. When the import process is complete click Close on the Import SLD dialog and then click Close on the Microsoft Component Database Manager dialog to close the Component Database Manager program.

2.2 Driver Files

· IO48XP.sld

This is the WinSystems IO48 Digital I/O Driver Windows XP Embedded component file.

· IO48XP.inf

This is the WinSystems IO48 Digital I/O Driver Windows XP installation file. The component file, IO48XP.sld, is based on this file.

· IO48XP.cat

This is a dummy catalog file. You may submit this driver to the Microsoft Windows Hardware Quality Lab (WHQL) for WHQL certification.

· IO48XP.sys

This is the retail build of the WinSystems UIO48/96 Digital I/O Driver.

· Ioctls.h

This file contains structure definitions and IOCTL definitions to be used by an application to communicate with the WinSystems IO48 Digital I/O Driver. This file is included in this document in Appendix B: Ioctls.h.

2.3 Adding the Driver to your Configuration

The following steps will guide you in integrating the WinSystems IO48 Digital I/O Driver to your configuration.

Step 1 Open or create the project for which the IO48 Digital I/O Driver is to be integrated.

Step 2 Right-click on the WinSystems PCM-IO48 Digital I/O component, located in the Hardware\Devices\Non-Plug and Play Devices node of the component tree view, depending upon which device is in your hardware configuration.

Step 3 These component depends upon the Class Installer – Non-Plug and Play Drivers component. The Class Installer – Non-Plug and Play Drivers component should automatically be added to the configuration when you perform a dependency check. If you prefer to add this component manually you must change the minimum visibility to a value of 100 before you can locate the component in the Software\System\SystemServices\Base node of the component tree view.

The WinSystems PCM-IO48 Digital I/O component must be configured to the specific settings of the hardware resources. To configure these components the registry settings of these components need to be modified. Verify that you are running Target Designer in “Expert” mode and that the Resources menu item in the View menu is checked. Select the WinSystems PCM-IO48 Digital I/O component in your configuration, expand its tree node and select Registry Data. The registry settings for the driver will then be shown in the Details Pane. Several of these settings will need to be modified to match the configuration of your hardware. Please consult Appendix A: How To Modify The Component Registry Settings for the instructions on modifying the registry settings to correspond to your hardware configuration.

3 Using the Driver

The IOCTLS.H file included in the driver distribution files contains structure definitions and IOCTL definitions to be used by an application to communicate with the WinSystems IO48 Digital I/O Driver.

An application uses the Windows API function CreateFile to open the driver. The following example opens the first instance of the WinSystems IO48 Digital I/O Driver.

HANDLE hWIOHandle = CreateFile(
_T(“\\\\.\\IO48XP_0”),

GENERIC_READ | GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

FILE_FLAG_OVERLAPPED,

NULL);

The following example opens a second instance of the WinSystems IO48 Digital I/O Driver.

HANDLE hWIOHandle = CreateFile(
_T(“\\\\.\\IO48XP_1”),

GENERIC_READ | GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

FILE_FLAG_OVERLAPPED,

NULL);

Note: You must use the FILE_FLAG_OVERLAPPED file attribute flag in the call to CreateFile.

Once a handle to the driver has been obtained by calling CreateFile, the handle can be used in calls to the Windows API function DeviceIoControl to access the driver’s functions.

DWORD
dwPortNumber = 1;

BYTE byPortValue;

DWORD
dwActualOut;

DeviceIoControl(
hWIOHandle,

IOCTL_READ_BYTE,

&dwPortNumber,

sizeof(DWORD),

 &byPortValue,

 sizeof(BYTE),

&dwActualOut,

NULL);

When finished using the WinSystems IO48 Digitial I/O Driver a call should be made to the Windows API function CloseHandle.

CloseHandle(hWIOHandle);

The following is a description of each of the driver IOCTL functions that can be called via the Windows API function DeviceIoControl. Information as to the DeviceIoControl parameter definitions can be found in the IOCTLS.H file. This file is included in this document in Appendix B: Ioctls.h.

3.1 IOCTL_READ_BYTE

Gets the state of all I/O points in the specified port.

3.2 IOCTL_WRITE_BYTE

Sets the state of all I/O points in the specified port.

Appendix A: How To Modify The Component Registry Settings

3.3 Modifying the I/O Base Address and IRQ Values

The I/O Base Address and IRQ values are embedded in the data of the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Enum\Root\LegacyDriver\
0000\LogConf\ForcedConfig entry. These values must be modified to match your hardware configuration.

Select the WinSystems PCM-IO48 Digital I/O component to modify from the configuration tree view. Expand the node and select Registry Data. Select the HKEY_LOCAL_MACHINE\System\
CurrentControlSet\Enum\Root\LegacyDriver\0000\LogConf\ForcedConfig entry. Right-click and select Properties to display the Registry Resource Properties dialog. The binary value of this registry entry is shown in the Value: field of the dialog. To edit a value, position the cursor over the left-most character of the byte to modify and begin to enter the new value. To remove a value, or several values, highlight the value(s) to remove and click the Delete button.

3.4 WinSystems PCM-IO48 Digital I/O

Below is the default configuration for the PCM-IO48 Digital I/O. This default configuration sets an I/O Base Address of 0x0178.

01 00 00 00 FF FF FF FF
00 00 00 00 00 00 00 00
02 00 00 00 01 00 05 00
78 01 00 00 00 00 00 001
10 00 00 00 02 01 01 00
00 00 00 00200 00 00 003
FF FF FF FF
The shaded section is the interrupt configuration section. The PCM-IO48 device does not use an interrupt - this section must be zeroes.

1 This field contains the I/O Base Address of the device. The size of this field is 64 bits (eight bytes) in length. The PCM-IO48 device has a valid range of 0x0100 – 0x03FF. Therefore, you should only modify the first two bytes of this field to match your hardware configuration.

2 This field contains the IRQ Level. The size of this field is 32 bits (four bytes) in length. The PCM-IO48 device does not use interrupts. Therefore, these bytes should be zeroes.

3 This field contains the IRQ Vector. The size of this field is 32 bits (four bytes) in length. This field should also be zeroes.

4 Appendix B: Ioctls.h

// IOCTLS.H -- IOCTL code definitions for IO486XP driver

// Copyright (c) WinSystems. All rights reserved.

#ifndef IOCTLS_H

 #define IOCTLS_H

#ifndef CTL_CODE

 #pragma message("CTL_CODE undefined. Include winioctl.h or wdm.h")

#endif

// IO48 Register Definitions (offset from base address)

#define PORTA1 1 // Port A, chip 1 offset from base address

#define PORTB1 2 // Port B, chip 1 offset from base address

#define PORTC1 3 // Port C, chip 1 offset from base address

#define CMDPORT1 4 // Command Port, chip 1 offset from base address

#define PORTA2 5 // Port A, chip 2 offset from base address

#define PORTB2 6 // Port B, chip 2 offset from base address

#define PORTC2 7 // Port C, chip 2 offset from base address

#define CMDPORT2 8 // Command Port, chip 2 offset from base address

// Maximum number of IO ports

#define MAX_IO_PORTS 8

typedef unsigned char BYTE;

typedef unsigned char* PBYTE;

typedef unsigned long DWORD;

typedef unsigned long* PDWORD;

// Structure to use when writing a value to an I/O point or port using

// IOCTL_WIO_WRITE_BIT and IOCTL_WIO_WRITE_BYTE

typedef struct _IOStruct

{

 DWORD dwPortNumber; // Port number - valid range: 1-3 (per chip)

 BYTE byValue; // Value to write, 1 or 0

} IO_STRUC, *PIO_STRUC;

// Define the type of device. This parameter can be no bigger than a WORD

// value. The values used by Microsoft are in the range of 0-32767 and the

// values between 32768-65535 are reserved for use by OEMs and IHVs

#define IO_DEV_TYPE 32768

//---

// IOCTL_READ_BYTE - Device IO control routine to get the state of all I/O

// pins in the specified port

// dwCode IOCTL_READ_BYTE

// dwInLen [IN] Size of input data buffer, should be sizeof(DWORD)

// dwOutLen [IN] Size of output data buffer, should be sizeof(BYTE)

// pSysBuf [IN/OUT]

// [IN] Pointer to a DWORD containing the port number to read -

// valid range: 1-3 (per chip)

// [OUT] Pointer to a BYTE containing the state of the I/O port

// dwRetLen [OUT] Number of output bytes put into the copy buffer

//---

#define IOCTL_READ_BYTE CTL_CODE(IO_DEV_TYPE, 0x804, METHOD_BUFFERED, FILE_ANY_ACCESS)

//---

// IOCTL_WRITE_BYTE - Device IO control routine to set the state of all I/O

// pins in the specified port

// dwCode IOCTL_WRITE_BYTE

// dwInLen [IN] Size of input data buffer, should be sizeof(IO_STRUC)

// dwOutLen Ignored

// pSysBuf [IN] Pointer to a IO_STRUC structure

// IO_STRUC structure

// byPortNum The port number to write value to -

// valid range: 1-3 (per chip)

// byValue Value to write to port

// dwRetLen [OUT] Number of output bytes put into the copy buffer

//---

#define IOCTL_WRITE_BYTE CTL_CODE(IO_DEV_TYPE, 0x805, METHOD_BUFFERED, FILE_ANY_ACCESS)

#endif

Oct 27, 2003

Page 6 of 1
Revision 1.0

