WinSystems

Watchdog Timer

Windows XP
Driver Documentation

June 14, 2010 Page 1 of 7
Revision 1.0

Table of Contents

I INEEOAUCTIONeiiiiiieiiiieetee ettt ettt e et e et e st esabee e sabteesabeeenanee 3
1.1 Hardware ReqUIT@MENTS.........cccueieiiiieeiiieeriieeieecieeeeeeeeee e e stee e e eree e 3
1.2 Host System ReqUITEMENTScccouviiriiiieiiiieiiieeriie ettt 3
1.3 Driver DeliVerablescooiiiiiiiiiiiiiiiieniccee ettt 3

2 DIiver INtEZIratioN.eiiiuiieiiiiieeiiee ettt ettt et e st e st e st e e sbee e sabeeesans 3
2.1 Driver InStallationooiuiiiiiiiiiiieeieee et 3
2.2 DIIVET FAIES oo 4

3 USING the DIIVET...eiiiiiiiiiie ettt ettt e e e e e e et e e eaaeesaaeeenneeennnes 4
3.1 TIOCTL_WRITE_WDT ..ottt 5
3.2 TOCTL_READ_WDT ..ottt 5
3.3 TOCTL_ENBL_SECiittiiiitiieetentee ettt 5
34 TOCTL_ENBL_MIN.....ccctttiitiiieieriteie ettt ettt ettt s 5

4 AppendixX A: TOCHS. Reiiiiiiiii e 6

June 14, 2010 Page 2 of 7

Revision 1.0

1 Introduction

Many of WinSystems’ full-featured, high-performance single board computers offer an
integrated watchdog timer, which can be used to guard against software lockups. The
watchdog can be configured from the CMOS setup utility or directly from software. The
selection in the CMOS setting serves as the default timeout value as the processor boots.
The BIOS option is for enabling the watchdog only during boot. The provided driver
allows control of the watchdog timer under the Windows XP operating system and has
been tested using the Windows XP Operating System Service Pack 2.

1.1

Hardware Requirements

This driver has been designed to work with the following WinSystems’ products.

1.2

EBC-Z5xx
EBC-855
EPX-855
PPM-LX800-G
LPM-LX800-G

Host System Requirements

Your development machine should contain the following:

1.3

Microsoft Windows XP.

Driver Deliverables

The following file(s) should be downloaded from the WinSystems website

WSWDTXP.zip. This zip file contains the WinSystems WSWDTXP Driver and
support files for the Windows XP Operating System.

2 Driver Integration

2.1

Driver Installation

Step 1 Unzip the WSWDTXP.zip file into a folder on the computer containing the

Microsoft Windows XP OS.

Step 2 Installation is accomplished via the “Add New Hardware” applet in the

Windows control panel. Select “Have Disk™ and navigate to the directory
containing the driver files. Once selected, the Windows installer will copy the
PCMMIO.SYS file to the appropriate place in the Windows installation.

Step 3 The default hardware configuration for installation is I/O port 565H. The

driver I/O port setting cannot be changed using the Device Manager.

June 14, 2010 Page 3 of 7
Revision 1.0

2.2 Driver Files
The following files are included in WSWDTXP.zip:

e WSWDTXP.inf
This is the WinSystems WDT Driver Windows XP installation file.
e WSWDTXP.cat

This is a dummy catalog file. You may submit this driver to the Microsoft
Windows Hardware Quality Lab (WHQL) for WHQL certification.

e WSWDTXP.sys
This is the retail build of the WinSystems WDT Driver.
e Joctls.h

This file contains structure definitions and IOCTL definitions to be used by an
application to communicate with the WinSystems WDT Driver. This file is
included in this document in Appendix A: Ioctls.h.

3 Using the Driver

The IOCTLS.H file included in the driver distribution files contains structure definitions
and IOCTL definitions to be used by an application to communicate with the
WinSystems WSWDTXP Driver.

An application uses the Windows API function CreateFile to open the driver. The
following example opens the first instance of the WinSystems WDT Driver.

HANDLE hwIOHandle = CreateFile(_TC*\\\\.\\wswDT”),
GENERIC_READ | GENERIC_WRITE,

NULL,

OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL) ;

Note: You must use the FILE_FLAG_OVERLAPPED file attribute flag in the call to
CreateFile.

Once a handle to the driver has been obtained by calling CreateFile, the handle is used in
calls to the Windows API function DeviceloControl to access the driver’s features.

BYTE write_data;

DWORD back;

DeviceIoControl(hwbDTHandle,
TOCTL_WRITE_WDT,
&write_data,
sizeof (BYTE),
NULL,

0,
&back,
NULL) ;
When finished using the WinSystems WDT Digital I/O Driver a call should be made to
the Windows API function CloseHandle.
CloseHandTe(hwbTHandle) ;

June 14, 2010 Page 4 of 7
Revision 1.0

The following is a description of each of the driver IOCTL functions that can be called
via the Windows API function DeviceloControl. Information as to the DeviceloControl
parameter definitions can be found in the IOCTLS.H file. This file is included in this
document in Appendix A: Ioctls.h.

31 IOCTL_WRITE_WDT

Writes an 8-bit value to the watchdog timer register found at I/O port S66H. This
function is used to both set and pet the timer. The watchdog is enabled by writing a
timeout value other than zero. Writing O0h will disable the watchdog. The watchdog
timer is serviced by writing the timeout to I/O port 566H. If the watchdog has not
been serviced within the allotted time, the circuit resets the CPU.

3.2 I0OCTL_READ_WDT
Reads an 8-bit value from the watchdog timer register found at I/O port 566H.

3.3 IOCTL_ENBL_SEC

Sets the MSB found at I/O port 565H. This results in the time-out value being
measured in seconds.

34 10OCTL_ENBL_MIN

Clears the MSB found at I/O port 565H. This results in the time-out value being
measured in minutes.

June 14, 2010 Page 5 of 7
Revision 1.0

4 Appendix A: Ioctls.h

// IOCTLS.H -- IOCTL code definitions for wSWDTXP driver
// Copyright (c) winSystems. All rights reserved.

#ifndef IOCTLS_H
#define IOCTLS_H

#ifndef CTL_CODE
#gragma message("CTL_CODE undefined. Include winioctl.h or wdm.h™)
#endi

typedef unsigned char BYTE;
typedef unsigned char* PBYTE;
typedef unsigned short WORD;
typedef unsigned short* PWORD;
typedef unsigned long DWORD;
typedef unsigned Tong* PDWORD;

// Define the type of device. This parameter can be no bi%ger than a WORD
// value. The values used by Microsoft are in the range of 0-32767 and the
// values between 32768-65535 are reserved for use by OEMs and IHVs

#define WDT_DEV_TYPE 32768

= = e
// IOCTL_READ_WDT

//

// code IOCTL_READ_WDT

// cbin Ignored

// cbout [IN] size of output data buffer, should be sizeof(BYTE)

// pCopyBuffer [oUT] Pointer to a BYTE containing the data read

// info [oUT] Number of output bytes put into the copy buffer

#define IOCTL_READ_WDT CTL_CODE (WDT_DEV_TYPE, 0x800, METHOD_BUFFERED,
FILE_ANY_ACCESS)

[
;; IOCTL_WRITE_WDT

// code IOCTL_WRITE_WDT

// cbin [IN] size of input data buffer, should be sizeof(BYTE)

// cbout Ignored

// pCopyBuffer [IN] Pointer to a BYTE containing the data to write

// info Ignored

#define IOCTL_WRITE_WDT CTL_CODE (WDT_DEV_TYPE, 0x801, METHOD_BUFFERED,
FILE_ANY_ACCESS)

=
;; TIOCTL_ENABL_SEC

// code TOCTL_ENABL_SEC

// cbin Ignored

// cbout Ignored

// pCopyBuffer Ignored

// info Ignored

#define IOCTL_ENABL_SEC CTL_CODE (WDT_DEV_TYPE, 0x802, METHOD_BUFFERED,
FILE_ANY_ACCESS)

June 14, 2010 Page 6 of 7
Revision 1.0

// TIOCTL_ENABL_MIN

//

// code TOCTL_ENABL_MIN
// cbin Ignored

// cbout Ignored

// pCopyBuffer Ignored

// info Ignored

/
#define IOCTL_ENABL_MIN CTL_CODE (WDT_DEV_TYPE, 0x803, METHOD_BUFFERED,
FILE_ANY_ACCESS)

#endif

June 14, 2010 Page 7 of 7
Revision 1.0

