
06/25/2018 1
Rev 4.0

PCM-MIO-G-DA-1 Windows

Device Driver Package

1 Introduction

1.1 The WinSystems PCM-MIO-G-DA-1 device is a versatile, PC/104 analog input, analog
output, and digital I/O board designed for high accuracy and high channel count analog and
digital I/O. The board is based upon Linear Technologies’ state of the art precision converters
and voltage references which require no external calibration.

1.2 The WS16C48 ASIC provides 48 digital I/O lines addressed through six contiguous
registers. Each I/O line is individually programmable for input, output, or output with read back
operation. The ASIC supports up to 24 event sense lines which can sense a positive or negative
transition on the input. These can be used to generate a system interrupt request.

1.3 The LTC-2704 provides two 4-channel, 12-bit Digital-to-Analog (D/A) converters.
Output ranges supported are: 0-5V, 0-10V, ±5V or ±10V, +/-2.5V, and -2.5V to 7.5V. The data
sheet is found at http://www.analog.com/media/en/technical-documentation/data-
sheets/2704fd.pdf.

1.4 For more detailed explanations of the PCM-MIO-G-DA-1 software requirements, refer to
the Product Manual found at https://www.winsystems.com/wp-content/uploads/product-
manuals/pcm-mio-g-da-1-pm.pdf.

1.5 The PCM-MIO-G-DA-1 driver package is designed for and has been verified with 32-bit
and 64-bit versions of Microsoft WES 7 and Windows 10.

2 Installation

2.1 Before installing the device, verify that the board jumpers are configured for the desired
I/O base address. In the BIOS set-up menus, verify that the selected resources are not used by
other devices.

2.2 The driver, support files, and console applications are supplied in a zip file. The
following files are included:

 pcmmioda.sys – Windows device driver
 pcmmioda.inf – Windows installation file
 pcmmioda.cat – Windows catalog file
 WdfCoinstaller01011.dll – Windows co-installer

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 2
Rev 4.0

 pcmmiodaDLL.dll – Windows DLL
 pcmmiodaDLL.lib – Windows library file
 pcmmiodaDLL.h – driver include file
 flash.cpp – Windows application source
 poll.cpp – Windows application source
 setvolt.cpp – Windows application source
 setvolt_irq.cpp – Windows application source
 dacBuff.cpp – Windows application source
 flash.exe – Windows application
 poll.exe – Windows application
 setvolt.exe – Windows application
 setvolt_irq.exe – Windows application
 dacBuff.exe – Windows application
 vcredist_x86 or vcredist_x64 - Microsoft Visual C++ Redistributable

2.3 Installation is accomplished via the ‘Add legacy hardware’ selection found in the Action
menu of the Windows Device Manager. Navigate to the drive and folder containing the driver
files and select pcmmioda.inf. The Windows installer will copy the pcmmioda.sys driver file to
the appropriate directory in the Windows installation.

2.4 If multiple boards are stacked, the driver must be loaded for each device. Each instance
of the driver should be configured to match the jumper configuration. The I/O range is 32
sequential bytes.

2.5 In Device Manager, the PCM-MIO-DA Device(s) will appear under the System Devices
item. The desired hardware configuration can be selected under the Resources tab of the PCM-
MIO-DA Device Properties window. A reboot may be required after resource selection is
complete.

2.6 The included console applications can be used to verify driver installation and
functionality. Usage of the programs is described later in this document.

3 Driver Overview and Architecture

3.1 The file pcmmioda.sys is a Windows Driver Foundation kernel-mode (KMDF) driver
which facilitates access to the underlying hardware.

3.2 The file pcmmiodaDLL.dll is a Windows Dynamic-Link Library which provides more
user-friendly functions to access the device.

3.3 The driver utilizes the I/O Control (IOCTL) Request framework to control the register set
of each PCM-MIO device. Data is passed to and from the driver utilizing input and output
buffers.

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 3
Rev 4.0

4 Driver Usage

4.1 The pcmmiodaDLL.h file included in the driver distribution contains the function
definitions to be used by an application to communicate with the pcmmioda driver. This file is
included in Appendix A: pcmmiodaDLL.h.

4.2 An application calls the function InitializeSession to open the driver. This is required
before any of the other functions can be called. The following example opens the WinSystems
pcmmioda driver. If a zero is returned, then the driver has been successfully initialized. Any
other returned value indicates that an error has occurred and the device is unusable.

#define DEVICE 1 // access device 1

 if (InitializeSession(DEVICE))
 printf(“Error opening device\n”);

4.3 Once the driver is initialized, the other functions can be used to control the PCM-MIO.
Following is a description and sample code for each function. Each function requires a device
parameter which selects the desired PCM-MIO to access.

All functions below will follow the same return value model. If a zero is returned, the function
was successful. Otherwise there was an error and the function did not complete. Specific error
codes are defined later in this document.

4.4 DIO Functions

4.4.1 int DioResetDevice(unsigned int device)
This function resets the WS16C48 ASIC to a known state. All bits are defined as outputs at
state zero and all interrupts are disabled. Any locked port is unlocked.

 if (DioResetDevice(2)) // reset device 2
 printf(“Error resetting device\n”);

4.4.2 int DioSetIoMask(unsigned int device, unsigned int *portState)
Configures the mask for all digital I/O (DIO) ports provided in the memory location
portState. A mask bit defined as a zero is an input, and a mask bit defined as a one is an
output.

 unsigned int dev = 1;
 unsigned int mask[6]; // 48 I/O = 6 Ports

 mask[0] = 0xFF; // all bits output
 mask[1] = 0x00; // all bits input
 mask[2] = 0xF0; // upper nibble output, lower nibble input
 mask[3] = 0xFF; // all bits output
 mask[4] = 0xAA; // alternating input/output bits
 mask[5] = 0x55; // alternating input/output bits

 if (DioSetIoMask(dev, mask))

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 4
Rev 4.0

 printf(“Error configuring port masks\n”);

4.4.3 int DioGetIoMask(unsigned int device, unsigned int *portState)
Retrieves the mask for all DIO ports and stores them in the memory locations provided by
the array parameter portState. A mask bit defined as a zero is an input, and a mask bit
defined as a one is an output.

 unsigned int dev = 3;
 unsigned int mask[6]; // 48 I/O = 6 Ports

 if (DioGetIoMask(dev, mask))
 printf(“Error reading port masks\n”);

4.4.4 int DioReadAllPorts(unsigned int device, unsigned int *readValueArray)
Reads the current value of all available DIO ports and stores them in the memory locations
provided by the array parameter readValueArray.

 unsigned int dev = 2;
 unsigned int read_value[6]; // 48 I/O = 6 Ports

 if (DioReadAllPorts(dev, read_value))
 printf(“Error reading all ports\n”);

4.4.5 int DioReadPort(unsigned int device, int port, unsigned int *readValue)
Reads the current value of the selected DIO port and stores it in the memory location
provided by the parameter readValue.

 unsigned int dev = 1;
 unsigned int read_value;
 int port = 1;

 if (DioReadPort(dev, port, &read_value))
 printf(“Error reading port %d\n”, dev, port);
 else
 printf(“Port %d = 0x%02x\n”, dev, port, read_value);

4.4.6 int DioReadBit(unsigned int device, int bit, unsigned int *bitValue)
Reads the current value (0 or 1) of the selected DIO bit and stores it in the memory location
provided by the parameter bitValue.

 unsigned int dev = 1;
 unsigned int bit_value;
 int bit = 40;

 if (DioReadBit(dev, bit, &bit_value))
 printf(“Error reading bit %d\n”, dev, bit);
 else
 printf(“Bit %d = %d\n”, dev, port, bit_value);

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 5
Rev 4.0

4.4.7 int DioSetBit(unsigned int device, int bit)
Sets the selected DIO bit. If the bit is part of a locked port, an ACCESS_ERROR value is
returned.

 unsigned int dev = 4;
 int bit = 24;

 if (DioSetBit(dev, bit))
 printf(“Error setting bit %d\n”, dev, bit);

4.4.8 int DioClearBit(unsigned int device, int bit)
Clears the selected DIO bit. If the bit is part of a locked port, an ACCESS_ERROR value is
returned.

 unsigned int dev = 1;
 int bit = 0;

 if (DioClearBit(dev, bit))
 printf(“Error clearing bit %d\n”, dev, bit);

4.4.9 int DioWritePort(unsigned int device, int port, unsigned int writeValue)
Writes the value in the parameter writeValue to the selected DIO port. If the port is locked,
an ACCESS_ERROR value is returned.

 unsigned int dev = 2;
 unsigned int write_value = 0x55;
 int port = 4;

 if (DioWritePort(dev, port, write_value))
 printf(“Error writing to port %d\n”, dev, port);

4.4.10 int DioWriteBit(unsigned int device, int bit, unsigned int bitValue)
Writes the value specified by the parameter bitValue (0 or 1) to the selected DIO bit. If the
bit is part of a locked port, an ACCESS_ERROR value is returned.

 unsigned int dev = 1;
 int bit = 32;
 unsigned int bit_value = 1;

 if (DioWriteBit(dev, bit, bit_value))
 printf(“Error writing bit %d\n”, dev, bit);

4.4.11 int DioEnableInterrupt(unsigned int device, int bit, int edge)
This function enables interrupts for the selected DIO bit. The edge parameter selects a rising
or falling edge trigger for the interrupt. An enumerated value is provided which defines valid
values for the parameter edge (FALLING_EDGE = 0 and RISING_EDGE = 1).

 unsigned int dev = 2;
 int bit = 0;

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 6
Rev 4.0

 if (DioEnableInterrupt(dev, bit, RISING_EDGE))
 printf(“Error enabling interrupts for bit %d\n”, device, bit);

else
 printf(“Interrupts enabled for bit %d\n”, dev, bit);

4.4.12 int DioDisableInterrupt(unsigned int device, int bit)
This function disables interrupts for the selected DIO bit.

 unsigned int dev = 2;
 int bit = 23;

 if (DioDisableInterrupt(dev, bit))
 printf(“Error disabling interrupts for bit %d\n”, device, bit);

else
 printf(“Interrupts disabled for bit %d\n”, dev, bit);

4.4.13 int DioGetInterrupt(unsigned int device, unsigned int *irqArray)
This function retrieves the interrupt status for all 24 DIO bits and stores them in the memory
locations provided by the parameter irqArray. Any bit that is set indicates that an interrupt
has occurred on that DIO bit. After being read, the interrupt status on all interruptible bits is
reset to zero.

 unsigned int dev = 4;
 unsigned int irq[3]; // 24 IRQ = 3 Ports

 if (DioGetInterrupt(dev, irq))
 printf(“Error retrieving interrupts for device %d\n”, dev);

4.4.14 int DioWaitForInterrupt(unsigned int device, unsigned int *irqArray,
unsigned long timeout)

This function forces the driver to wait for an interrupt on any DIO bit that has been enabled
for interrupts. If an interrupt already exists on a bit, the function will act like the GetInterrupt
and immediately return and store the interrupt status in the memory locations provided by the
parameter irqArray.

If no interrupts are present, the function will wait until an interrupt does occur. This function
will not stop the execution of driver functions in another thread.

The timeout parameter provides a safeguard against system lockup. The value entered
provides a time out in milliseconds. If no interrupt occurs before the time-out expires, the
pending operation is canceled. To disable the timeout feature, use INFINITE as the timeout
parameter.

 unsigned int dev = 1;
 unsigned int irq[3]; // 24 IRQ = 3 Ports
 long timeout = 0x1000; // timeout = 4096 ms

 if (DioWaitForInterrupt(dev, irq, timeout))
 printf(“Error waiting for interrupts from device %d\n”, dev);

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 7
Rev 4.0

4.4.15 int DioLockPort(unsigned int device, int port)
Locks the selected DIO port which prevents writing to any bits in that port. The register can
still be read.

 unsigned int dev = 1;
 int port = 5;

 if (DioLockPort(dev, port))
 printf(“Error locking port %d\n”, dev, port);
 else
 printf(“Port %d locked for writing\n”, dev, port);

4.4.16 int DioUnlockPort(unsigned int device, int port)
Unlocks the selected DIO port which enables writing to any bits in that port.

 unsigned int dev = 1;
 int port = 0;

 if (DioUnlockPort(dev, port))
 printf(“Error unlocking port %d\n”, dev, port);
 else
 printf(“Port %d unlocked\n”, dev, port);

4.5 DAC Functions
The PCM-MIO contains two Linear Tech LTC-2704 Digital-to-Analog Converter (DAC)
devices. Each device is a 4-channel converter with software selectable output span.

4.5.1 int DacSetChannelVoltage(unsigned int device, unsigned int channel, float
voltage)

This function programs the specified channel to the desired voltage level. The optimal DAC
output range is selected according to the desired voltage. The following example code will
step the voltage on channel 6 from -10V to +10V by one volt in two-second intervals.

 unsigned int dev = 1;
 unsigned int ch = 6;
 float voltage;

 // step through voltages from -10V to 10V
 for (voltage = -10.0; voltage <= 10.0; voltage++) {
 dllReturn = DacSetChannelVoltage(dev, ch, voltage);

 if (dllReturn)
 {
 printf("Error setting DAC channel %d voltage\n", ch);
 exit(dllReturn);
 }
 else
 {
 printf("DAC Channel %d voltage set to %.5f\n", ch, voltage);
 Sleep(2000); // sleep for two seconds

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 8
Rev 4.0

 }
 }

4.5.2 int DacSetChannelOutput(unsigned int device, unsigned int channel,

unsigned short code)
This function programs the specified channel to the desired 16-bit value. The actual voltage
will depend on the current span setting for that channel. No span adjustments are made unlike
the DacSetChannelVoltage function.

 unsigned int dev = 1;
 unsigned int ch = 1;
 unsigned short code = 0x4000;

 dllReturn = DacSetChannelValue(dev, ch, code);

 if (dllReturn)
 {
 printf("Error setting DAC channel %d value\n", ch);
 exit(dllReturn);
 }
 else
 printf("DAC Channel %d value set to %04x\n", ch, code);

4.5.3 int DacSetChannelSpan(unsigned int device, unsigned int channel, unsigned

short span)
This function programs the span value for the specified channel. An enumerated value called
DacSpan provides all valid span values.

DacSpan Voltage Range
DAC_SPAN_UNI5 Unipolar 0V to 5V
DAC_SPAN_UNI10 Unipolar 0V to 10V
DAC_SPAN_BI5 Bipolar -5V to 5V
DAC_SPAN_BI10 Bipolar -10V to 10V
DAC_SPAN_BI2 Bipolar -2.5V to 2.5V
DAC_SPAN_BI7 Bipolar -2.5V to 7.5V

 // set channel 0 span to bipolar -5V to 5V

 unsigned int dev = 1;
 unsigned int ch = 0;

 dllReturn = DacSetChannelSpan(dev, ch, DAC_SPAN_BI5);

 if (dllReturn)
 {
 printf("Error setting DAC span on channel %d\n", ch);
 exit(dllReturn);
 }

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 9
Rev 4.0

4.5.4 int DacBufferedVoltage(unsigned int device, unsigned short *chanBuf, float

*voltBuf)
This function programs a series of DAC channels to a corresponding series of voltages. An
array of channels to be measured is provided in the variable chanBuf. This array must be
terminated with a 0xFF value. A second array provides the voltage to be programmed on the
corresponding channel in the variable voltBuf. This array must be one less than the size of the
chanBuf array.

 unsigned int dev = 1;
 unsigned short chanBuf[] = { 0, 1, 2, 3, 4, 5, 6, 7, 0xff };
 float voltBuf[] = { -8.8, -5.5, -3.3, -1.8, 1.1, 2.2, 4.4, 9.9 };

 dllReturn = DacBufferedVoltage(dev, chanBuf, voltBuf);

 if (dllReturn)
 {
 printf("Error programming DAC channels\n");
 exit(dllReturn);
 }

4.5.5 int DacEnableInterrupt(unsigned int device, unsigned int channel)
This function is used to enable interrupts for a specific DAC device. A DAC generates an
interrupt when a channel program cycle is complete. This eliminates the need for the code to
poll the ready bit to indicate when the program process is complete.

If interrupts are enabled for a specific channel, then interrupts are enabled for all channels on
that device. DAC device 1 supports channels 0 to 3 and DAC device 2 supports channels 4 to
7.

 // selecting channel 7 will enable interrupts for channels 4-7

 unsigned int dev = 1;
 unsigned int ch = 7;

 dllReturn = DacEnableInterrupt(dev, ch);

 if (dllReturn)
 {
 printf("Error enabling interrupts for DAC2\n");
 exit(dllReturn);
 }
 else
 printf("Interrupts enabled for DAC2\n");

4.5.6 int DacDisableInterrupt(unsigned int device, unsigned int channel)
This function is used to disable interrupts for a specific DAC device. If interrupts are
disabled for a specific channel, then interrupts are disabled for all channels on that device.
DAC device 1 supports channels 0 to 3 and DAC device 2 supports channels 4 to 7.

 // selecting channel 1 will diable interrupts for channels 0-3

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 10
Rev 4.0

 unsigned int dev = 1;
 unsigned int ch = 1;

 dllReturn = DacDisableInterrupt(dev, ch);

 if (dllReturn)
 {
 printf("Error disabling interrupts for DAC1\n");
 exit(dllReturn);
 }
 else
 printf("Interrupts disabled for DAC1\n");

4.5.7 int DacWaitForUpdate(unsigned int device, unsigned int channel, unsigned

short code, unsigned long timeout)
This function forces a process to wait for a programming cycle to complete on a specific
DAC channel that has been enabled for interrupts. The function will wait until an interrupt
does occur indicating that a voltage has been set on that channel. This function will not stop
the execution of driver functions in another thread.

The timeout parameter provides a safeguard against system lockup. The value entered
provides a time out in milliseconds. If no interrupt occurs before the time-out expires, the
pending operation is canceled. To disable the timeout feature, use INFINITE as the timeout
parameter.

 // wait for interrupt on channel 7

 unsigned int dev = 1;
 unsigned int ch = 7;
 unsigned short chValue = 0xAB00;
 unsigned long *timeout = 0x1000; // 4096 msec

 // put process to sleep until program cycle completes
 dllReturn = DacWaitForConversion(dev, ch, chValue, timeout);

 if (dllReturn) {
 printf("Error waiting for program of channel %d\n", ch);
 exit(dllReturn);
 }
 else
 printf("DAC Channel %d value set to %04x\n", ch, chValue);

4.5.8 int DacWriteCommand(unsigned int device, unsigned int channel, unsigned

int dacCommand)
This function allows the user to program the DAC Command Register. Each DAC contains a
command register used to configure the span and load the data. The command word consists
of a 4-bit command and a 4-bit address, as shown. The variable dacCommand contains the
value to be written. More information for each bit field can be found in the LTC2704 Data
Sheet. An enumerated value called DacControl provides all valid command values.

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 11
Rev 4.0

 // write command to channel 3

 unsigned int dev = 1;
 unsigned int ch = 3;

 dllReturn = DacWriteCommand(dev, ch, DAC_CMD_WR_UPDATE_SPAN);

 if (dllReturn) {
 printf("Error writing command to channel %d\n", ch);
 exit(dllReturn);
 }

4.5.9 int DacWriteData(unsigned int device, unsigned int channel, unsigned int

dacData)
This function allows the user to program the 16-bit DAC Data Register. The data register sets
the value of the DAC voltage based on the span of the same channel. The variable dacData
contains the value to be written.

 // write data to channel 5

 unsigned int dev = 1;
 unsigned int ch = 5;
 unsigned short chValue = 0x7788;

 dllReturn = DacWriteData(dev, ch, chValue);

 if (dllReturn) {
 printf("Error writing data to channel %d\n", ch);
 exit(dllReturn);
 }

4.5.10 int DacReadData(unsigned int device, unsigned int channel, unsigned int

*dacData)
This function allows the user to read the DAC Data Registers. The 16-bit value is returned in
the variable dacData. The Readback Enable bit is set before the read. This should only be
used if the DacWaitForReady function completes successfully.

 unsigned int dev = 1;
 unsigned int ch = 2;
 unsigned short dacValue;

 dllReturn = DacReadData(dev, ch, & dacValue);

 if (dllReturn)
 {
 printf("Error reading data from channel %d\n", ch);
 exit(dllReturn);
 }
 else
 printf("DAC channel %d value is %04x ... ", ch, dacValue);

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 12
Rev 4.0

4.5.11 int DacWaitForReady(unsigned int device, unsigned int channel)
This function allows the user to read the DAC Status Register and determine if the Data
Ready bit has been set. If the function returns a zero, then the ready bit has been set and the
data register contains valid data. If the function returns a value of TIMEOUT_ERROR (5),
the ready bit was never set.

 // wait for ready on channel 4

 unsigned int dev = 1;
 unsigned int ch = 4;

 dllReturn = DacWaitForReady(dev, ch);

 if (!dllReturn)
 printf("Ready returned for channel %d\n", ch);
 else if (dllReturn == TIMEOUT_ERROR)
 printf("Ready not returned for channel %d\n", ch);
 else {
 printf("Error waiting for ready on channel %d\n", ch);
 exit(dllReturn);
 }

4.6 Generic Functions

4.6.1 int CloseSession(unsigned int device)
This function is used to disable the pcmmioda device and close the driver when complete. If
a zero is returned, the driver is closed. Otherwise there was an error and the driver is still
open.

 unsigned int dev = 1;

 if (CloseSession(dev))
 printf(“Error closing driver\n”);

4.7 Every function returns a zero or a positive integer value indicating success or failure. If a
zero is returned, the function has completed successfully. If a failure occurs, the specific value
returned provides more clarity as to the failure mechanism.

4.7.1 DRIVER_ERROR (1)
This error indicates that some function within the driver has failed. This error indicates that
one of the IOCTL calls within the driver itself has not completed successfully. Using
Windows Device Manager, verify that the driver is loaded and has no resource conflicts.

4.7.2 ACCESS_ERROR (2)
This error indicates the following conditions are present:

 The driver has tried to write to a DIO bit defined as an input
 The driver attempts to enable interrupts for a DIO bit defined as an output
 The driver attempts to write to a locked DIO port
 The driver attempts to change a bit in a locked DIO port

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 13
Rev 4.0

 The driver is unable to start a DioWaitForInterrupt or DacWaitForUpdate call

4.7.3 INVALID_HANDLE (3)
This error indicates that the driver has not initialized or closed. The driver attempts to obtain
a handle to the PCM-MIO device, and this error indicates that the handle was not obtained.
Verify that the driver has loaded successfully.

4.7.4 INVALID_PARAMETER (4)
This error indicates that one of the parameters in a DLL function is out of bounds.

4.7.5 TIMEOUT_ERROR (5)
This error indicates the following conditions are present:

 Either the DioWaitForInterrupt or DacWaitForUpdate function has exceeded the
provided timeout value before an interrupt occurred

 A DAC program cycle failed due to the ready bit never being set
 The function DacWaitForReady never had the ready bit set

5 Sample Applications
The driver package provides sample Windows console applications for most of the functions
provided in the driver package. The source code and an executable file is provided for each
application.

5.1 DIO Applications

5.1.1 flash
The flash sample application sets and clears each bit in sequential order. All bits are
configured as outputs, and then each bit is toggled with a 200 msec delay. If any error occurs
during execution, the error is reported and the application is terminated.

5.1.2 poll
The poll sample application tests DIO interrupts. The device is opened and all bits of the first
three ports are configured as inputs. Interrupts are enabled for each input bit alternating
between rising and falling edge. A separate thread is created that calls the
DioWaitForInterrupt function. If any of the input bits are toggled with the proper edge
polarity, the specific interrupt is displayed on the console. Any keystroke will terminate the
program and report the total number of interrupts.

5.2 DAC Applications

5.2.1 setvolt
The setvolt sample application programs the selected channel from -10V to 10V in one volt
steps every 2 seconds using the DacSetChannelVoltage function. The channel number is
provided as a command line argument. If any error occurs during execution, the error is
reported and the application is terminated.

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 14
Rev 4.0

5.2.2 setvolt_irq
The setvolt_irq sample application uses interrupts to continuously program a value on a
single channel for each device. All channels are configured for a span of ±10V bi-polar and
both DAC devices are enabled for interrupts. Two separate threads are created for each DAC
device that calls the DacWaitForUpdate function for the specified channel every 50 msec.
The value is incremented by a set value after each programming step. If successful, the
programmed value is displayed. Any keystroke will terminate the program and report the
total number of interrupts.

5.2.3 dacBuff
The dacBuff sample application uses the DacBufferedVoltage function to program the
channel sequence with the voltage sequence provided by the array variables. The function
will optimize the span for each channel based on the desired voltage. If any error occurs
during execution, the error is reported and the application is terminated.

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 15
Rev 4.0

Appendix A: pcmmiodaDLL.h

//**
//
// Copyright 2018 by WinSystems Inc.
//
//**
//
// Name : pcmmiodaDLL.h
//
// Project : PCM-MIO Windows DLL
//
// Author : Paul DeMetrotion
//
//**
//
// Date Rev Description
// -------- ------- ---
// 03/09/18 1.0 Original Release of DLL
//
//**

#ifndef _PCMMIODA_DLL_H_
 #define _PCMMIODA_DLL_H_

#if defined DLL_EXPORT
 #define DECLDIR __declspec(dllexport)
#else
 #define DECLDIR __declspec(dllimport)
#endif // DLL_EXPORT

extern "C"
{
 DECLDIR int InitializeSession(unsigned int device);
 DECLDIR int CloseSession(unsigned int device);

 // DIO functions
 DECLDIR int DioResetDevice(unsigned int device);
 DECLDIR int DioSetIoMask(unsigned int device, unsigned int *portState);
 DECLDIR int DioGetIoMask(unsigned int device, unsigned int *portState);
 DECLDIR int DioReadAllPorts(unsigned int device, unsigned int *readValueArray);
 DECLDIR int DioReadPort(unsigned int device, int port, unsigned int *readValue);
 DECLDIR int DioReadBit(unsigned int device, int bit, unsigned int *bitValue);
 DECLDIR int DioSetBit(unsigned int device, int bit);
 DECLDIR int DioClearBit(unsigned int device, int bit);
 DECLDIR int DioWritePort(unsigned int device, int port, unsigned int writeValue);
 DECLDIR int DioWriteBit(unsigned int device, int bit, unsigned int bitValue);
 DECLDIR int DioEnableInterrupt(unsigned int device, int bit, int edge);
 DECLDIR int DioDisableInterrupt(unsigned int device, int bit);
 DECLDIR int DioGetInterrupt(unsigned int device, unsigned int *irqArray);
 DECLDIR int DioWaitForInterrupt(unsigned int device, unsigned int *irqArray, unsigned
long timeout);
 DECLDIR int DioLockPort(unsigned int device, int port);
 DECLDIR int DioUnlockPort(unsigned int device, int port);

 // DAC functions

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 16
Rev 4.0

 DECLDIR int DacSetChannelVoltage(unsigned int device, unsigned int channel, float
voltage);
 DECLDIR int DacSetChannelOutput(unsigned int device, unsigned int channel, unsigned
short code);
 DECLDIR int DacSetChannelSpan(unsigned int device, unsigned int channel, unsigned
short span);
 DECLDIR int DacBufferedVoltage(unsigned int device, unsigned short *chanBuf, float
*voltBuf);
 DECLDIR int DacEnableInterrupt(unsigned int device, unsigned int channel);
 DECLDIR int DacDisableInterrupt(unsigned int device, unsigned int channel);
 DECLDIR int DacWaitForUpdate(unsigned int device, unsigned int channel, unsigned
short code, unsigned long timeout);
 DECLDIR int DacWriteCommand(unsigned int device, unsigned int channel, unsigned int
dacCommand);
 DECLDIR int DacWriteData(unsigned int device, unsigned int channel, unsigned int
dacData);
 DECLDIR int DacReadData(unsigned int device, unsigned int channel, unsigned int
*dacData);
 DECLDIR int DacWaitForReady(unsigned int device, unsigned int channel);
}

typedef enum {
 SUCCESS = 0,
 DRIVER_ERROR,
 ACCESS_ERROR,
 INVALID_HANDLE,
 INVALID_PARAMETER,
 TIMEOUT_ERROR
} ErrorCodes;

typedef enum {
 FALLING_EDGE = 0,
 RISING_EDGE
} IrqEdge;

typedef enum {
 DAC_A = 0,
 DAC_B = 2,
 DAC_C = 4,
 DAC_D = 6,
 DAC_ALL = 15,
} DacAddress;

typedef enum {
 DAC_SPAN_UNI5 = 0,
 DAC_SPAN_UNI10,
 DAC_SPAN_BI5,
 DAC_SPAN_BI10,
 DAC_SPAN_BI2,
 DAC_SPAN_BI7
} DacSpan;

typedef enum {
 DAC_CMD_WR_B1_SPAN = 2,
 DAC_CMD_WR_B1_CODE,
 DAC_CMD_UPDATE,
 DAC_CMD_UPDATE_ALL,
 DAC_CMD_WR_UPDATE_SPAN,

 PCM-MIO-G-DA-1 Windows Device Driver Package

06/25/2018 17
Rev 4.0

 DAC_CMD_WR_UPDATE_CODE,
 DAC_CMD_WR_SPAN_UPDATE_ALL,
 DAC_CMD_WR_CODE_UPDATE_ALL,
 DAC_CMD_RD_B1_SPAN,
 DAC_CMD_RD_B1_CODE,
 DAC_CMD_RD_B2_SPAN,
 DAC_CMD_RD_B2_CODE,
 DAC_CMD_SLEEP,
 DAC_CMD_NOP
} DacControl;

#endif // _PCMMIODA_DLL_H_

