
05/30/2018 1
Rev 4.0

PCM-MIO-G-AD-1 Windows

Device Driver Package

1 Introduction

1.1 The WinSystems PCM-MIO-G-AD-1 device is a versatile, PC/104 analog input and
digital I/O board designed for high accuracy and high channel count analog and digital I/O. The
board is based upon Linear Technologies’ state of the art precision converters and voltage
references which require no external calibration.

1.2 The WS16C48 ASIC provides 48 digital I/O lines addressed through six contiguous
registers. Each I/O line is individually programmable for input, output, or output with read back
operation. The ASIC supports up to 24 event sense lines which can sense a positive or negative
transition on the input. These can be used to generate a system interrupt request.

1.3 The LTC-1859 provides two 8-channel, 16-bit Analog-to-Digital (A/D) converters with
sample-and-hold-circuit support. Input ranges supported are: 0-5V, 0-10V, ±5V and ±10V. The
data sheet is found at http://www.analog.com/media/en/technical-documentation/data-
sheets/185789fb.pdf.

1.4 For more detailed explanations of the PCM-MIO-AD-G-1 software requirements, refer to
the Product Manual found at https://www.winsystems.com/wp-content/uploads/product-
manuals/pcm-mio-g-ad-1-pm.pdf.

1.5 The PCM-MIO-G-AD-1 driver package is designed for and has been verified with 32-bit
and 64-bit versions of Microsoft WES 7 and Windows 10.

2 Installation

2.1 Before installing the device, verify that the board jumpers are configured for the desired
I/O base address. In the BIOS set-up menus, verify that the selected resources are not used by
other devices.

2.2 The driver, support files, and console applications are supplied in a zip file. The
following files are included:

 pcmmioad.sys – Windows device driver
 pcmmioad.inf – Windows installation file
 pcmmioad.cat – Windows catalog file
 WdfCoinstaller01011.dll – Windows co-installer

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 2
Rev 4.0

 pcmmioadDLL.dll – Windows DLL
 pcmmioadDLL.lib – Windows library file
 pcmmioadDLL.h – driver include file
 flash.cpp – Windows application source
 poll.cpp – Windows application source
 getvolt.cpp – Windows application source
 getvolt_irq.cpp – Windows application source
 getall.cpp – Windows application source
 adcBuff.cpp – Windows application source
 adcRepeat.cpp – Windows application source
 flash.exe – Windows application
 poll.exe – Windows application
 getvolt.exe – Windows application
 getvolt_irq.exe – Windows application
 getall.exe – Windows application
 adcBuff.exe – Windows application
 adcRepeat.exe – Windows application
 vcredist_x86 or vcredist_x64 - Microsoft Visual C++ Redistributable

2.3 Installation is accomplished via the ‘Add legacy hardware’ selection found in the Action
menu of the Windows Device Manager. Navigate to the drive and folder containing the driver
files and select pcmmioad.inf. The Windows installer will copy the pcmmioad.sys driver file to
the appropriate directory in the Windows installation.

2.4 If multiple boards are stacked, the driver must be loaded for each device. Each instance
of the driver should be configured to match the jumper configuration. The I/O range is 32
sequential bytes.

2.5 In Device Manager, the PCM-MIO-AD Device(s) will appear under the System Devices
item. The desired hardware configuration can be selected under the Resources tab of the PCM-
MIO-AD Device Properties window. A reboot may be required after resource selection is
complete.

2.6 The included console applications can be used to verify driver installation and
functionality. Usage of the programs is described later in this document.

3 Driver Overview and Architecture

3.1 The file pcmmioad.sys is a Windows Driver Foundation kernel-mode (KMDF) driver
which facilitates access to the underlying hardware.

3.2 The file pcmmioadDLL.dll is a Windows Dynamic-Link Library which provides more
user-friendly functions to access the device.

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 3
Rev 4.0

3.3 The driver utilizes the I/O Control (IOCTL) Request framework to control the register set
of each PCM-MIO device. Data is passed to and from the driver utilizing input and output
buffers.

4 Driver Usage

4.1 The pcmmioadDLL.h file included in the driver distribution contains the function
definitions to be used by an application to communicate with the pcmmioad driver. This file is
included in Appendix A: pcmmioadDLL.h.

4.2 An application calls the function InitializeSession to open the driver. This is required
before any of the other functions can be called. The following example opens the WinSystems
pcmmioad driver. If a zero is returned, then the driver has been successfully initialized. Any
other returned value indicates that an error has occurred and the device is unusable.

#define DEVICE 1 // access device 1

 if (InitializeSession(DEVICE))
 printf(“Error opening device\n”);

4.3 Once the driver is initialized, the other functions can be used to control the PCM-MIO-
AD. Following is a description and sample code for each function. Each function requires a
device parameter which selects the desired PCM-MIO-AD to access.

All functions below will follow the same return value model. If a zero is returned, the function
was successful. Otherwise there was an error and the function did not complete. Specific error
codes are defined later in this document.

4.4 DIO Functions

4.4.1 int DioResetDevice(unsigned int device)
This function resets the WS16C48 ASIC to a known state. All bits are defined as outputs at
state zero and all interrupts are disabled. Any locked port is unlocked.

 if (DioResetDevice(2)) // reset device 2
 printf(“Error resetting device\n”);

4.4.2 int DioSetIoMask(unsigned int device, unsigned int *portState)
Configures the mask for all digital I/O (DIO) ports provided in the memory location
portState. A mask bit defined as a zero is an input, and a mask bit defined as a one is an
output.

 unsigned int dev = 1;
 unsigned int mask[6]; // 48 I/O = 6 Ports

 mask[0] = 0xFF; // all bits output
 mask[1] = 0x00; // all bits input

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 4
Rev 4.0

 mask[2] = 0xF0; // upper nibble output, lower nibble input
 mask[3] = 0xFF; // all bits output
 mask[4] = 0xAA; // alternating input/output bits
 mask[5] = 0x55; // alternating input/output bits

 if (DioSetIoMask(dev, mask))
 printf(“Error configuring port masks\n”);

4.4.3 int DioGetIoMask(unsigned int device, unsigned int *portState)
Retrieves the mask for all DIO ports and stores them in the memory locations provided by
the array parameter portState. A mask bit defined as a zero is an input, and a mask bit
defined as a one is an output.

 unsigned int dev = 3;
 unsigned int mask[6]; // 48 I/O = 6 Ports

 if (DioGetIoMask(dev, mask))
 printf(“Error reading port masks\n”);

4.4.4 int DioReadAllPorts(unsigned int device, unsigned int *readValueArray)
Reads the current value of all available DIO ports and stores them in the memory locations
provided by the array parameter readValueArray.

 unsigned int dev = 2;
 unsigned int read_value[6]; // 48 I/O = 6 Ports

 if (DioReadAllPorts(dev, read_value))
 printf(“Error reading all ports\n”);

4.4.5 int DioReadPort(unsigned int device, int port, unsigned int *readValue)
Reads the current value of the selected DIO port and stores it in the memory location
provided by the parameter readValue.

 unsigned int dev = 1;
 unsigned int read_value;
 int port = 1;

 if (DioReadPort(dev, port, &read_value))
 printf(“Error reading port %d\n”, dev, port);
 else
 printf(“Port %d = 0x%02x\n”, dev, port, read_value);

4.4.6 int DioReadBit(unsigned int device, int bit, unsigned int *bitValue)
Reads the current value (0 or 1) of the selected DIO bit and stores it in the memory location
provided by the parameter bitValue.

 unsigned int dev = 1;
 unsigned int bit_value;
 int bit = 40;

 if (DioReadBit(dev, bit, &bit_value))

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 5
Rev 4.0

 printf(“Error reading bit %d\n”, dev, bit);
 else
 printf(“Bit %d = %d\n”, dev, port, bit_value);

4.4.7 int DioSetBit(unsigned int device, int bit)
Sets the selected DIO bit. If the bit is part of a locked port, an ACCESS_ERROR value is
returned.

 unsigned int dev = 4;
 int bit = 24;

 if (DioSetBit(dev, bit))
 printf(“Error setting bit %d\n”, dev, bit);

4.4.8 int DioClearBit(unsigned int device, int bit)
Clears the selected DIO bit. If the bit is part of a locked port, an ACCESS_ERROR value is
returned.

 unsigned int dev = 1;
 int bit = 0;

 if (DioClearBit(dev, bit))
 printf(“Error clearing bit %d\n”, dev, bit);

4.4.9 int DioWritePort(unsigned int device, int port, unsigned int writeValue)
Writes the value in the parameter writeValue to the selected DIO port. If the port is locked,
an ACCESS_ERROR value is returned.

 unsigned int dev = 2;
 unsigned int write_value = 0x55;
 int port = 4;

 if (DioWritePort(dev, port, write_value))
 printf(“Error writing to port %d\n”, dev, port);

4.4.10 int DioWriteBit(unsigned int device, int bit, unsigned int bitValue)
Writes the value specified by the parameter bitValue (0 or 1) to the selected DIO bit. If the
bit is part of a locked port, an ACCESS_ERROR value is returned.

 unsigned int dev = 1;
 int bit = 32;
 unsigned int bit_value = 1;

 if (DioWriteBit(dev, bit, bit_value))
 printf(“Error writing bit %d\n”, dev, bit);

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 6
Rev 4.0

4.4.11 int DioEnableInterrupt(unsigned int device, int bit, int edge)
This function enables interrupts for the selected DIO bit. The edge parameter selects a rising
or falling edge trigger for the interrupt. An enumerated value is provided which defines valid
values for the parameter edge (FALLING_EDGE = 0 and RISING_EDGE = 1).

 unsigned int dev = 2;
 int bit = 0;

 if (DioEnableInterrupt(dev, bit, RISING_EDGE))
 printf(“Error enabling interrupts for bit %d\n”, device, bit);

else
 printf(“Interrupts enabled for bit %d\n”, dev, bit);

4.4.12 int DioDisableInterrupt(unsigned int device, int bit)
This function disables interrupts for the selected DIO bit.

 unsigned int dev = 2;
 int bit = 23;

 if (DioDisableInterrupt(dev, bit))
 printf(“Error disabling interrupts for bit %d\n”, device, bit);

else
 printf(“Interrupts disabled for bit %d\n”, dev, bit);

4.4.13 int DioGetInterrupt(unsigned int device, unsigned int *irqArray)
This function retrieves the interrupt status for all 24 DIO bits and stores them in the memory
locations provided by the parameter irqArray. Any bit that is set indicates that an interrupt
has occurred on that DIO bit. After being read, the interrupt status on all interruptible bits is
reset to zero.

 unsigned int dev = 4;
 unsigned int irq[3]; // 24 IRQ = 3 Ports

 if (DioGetInterrupt(dev, irq))
 printf(“Error retrieving interrupts for device %d\n”, dev);

4.4.14 int DioWaitForInterrupt(unsigned int device, unsigned int *irqArray,
unsigned long timeout)

This function forces the driver to wait for an interrupt on any DIO bit that has been enabled
for interrupts. If an interrupt already exists on a bit, the function will act like the GetInterrupt
and immediately return and store the interrupt status in the memory locations provided by the
parameter irqArray.

If no interrupts are present, the function will wait until an interrupt does occur. This function
will not stop the execution of driver functions in another thread.

The timeout parameter provides a safeguard against system lockup. The value entered
provides a time out in milliseconds. If no interrupt occurs before the time-out expires, the

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 7
Rev 4.0

pending operation is canceled. To disable the timeout feature, use INFINITE as the timeout
parameter.

 unsigned int dev = 1;
 unsigned int irq[3]; // 24 IRQ = 3 Ports
 long timeout = 0x1000; // timeout = 4096 ms

 if (DioWaitForInterrupt(dev, irq, timeout))
 printf(“Error waiting for interrupts from device %d\n”, dev);

4.4.15 int DioLockPort(unsigned int device, int port)
Locks the selected DIO port which prevents writing to any bits in that port. The register can
still be read.

 unsigned int dev = 1;
 int port = 5;

 if (DioLockPort(dev, port))
 printf(“Error locking port %d\n”, dev, port);
 else
 printf(“Port %d locked for writing\n”, dev, port);

4.4.16 int DioUnlockPort(unsigned int device, int port)
Unlocks the selected DIO port which enables writing to any bits in that port.

 unsigned int dev = 1;
 int port = 0;

 if (DioUnlockPort(dev, port))
 printf(“Error unlocking port %d\n”, dev, port);
 else
 printf(“Port %d unlocked\n”, dev, port);

4.5 ADC Functions
The PCM-MIO-G-AD-1 uses two Linear Tech LTC-1859 8-channel A/D converters. Each
device is independently software configurable to support the listed input modes and ranges. The
devices use a full-duplex serial interface which transmits and receives data simultaneously. An 8-
bit command is shifted into the ADC interface to configure it for the next conversion. At the
same time, the data from the previous conversion is shifted out of device. Consequently, the
conversion result is delayed by one conversion from the command word. Consecutive
conversions of the same channel are required to obtain the current voltage measurement. Most of
the functions defined include this functionality. For example, the function AdcGetChannelValue
will return the current value on the specified channel.

4.5.1 int AdcSetChannelMode(unsigned int device, unsigned int channel, int mode,
int duplex, int range)

Configures the input range of the selected ADC channel. The mode variable configures each
pair of channels as two single ended inputs or a single differential input. The valid selections
are ADC_SINGLE_ENDED and ADC_DIFFERENTIAL. The duplex variable configures
the channel for a unipolar or bipolar conversion. The valid selections are ADC_UNIPOLAR

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 8
Rev 4.0

and ADC_BIPOLAR. The range variable determines the input span for the conversion. The
valid selections are ADC_TOP_5V and ADC_TOP_10V.

 // configure channel 4 for single ended ±10V

 unsigned int dev = 1;
 unsigned int ch = 4;

 dllReturn = AdcSetChannelMode(dev, ch, ADC_SINGLE_ENDED, ADC_BIPOLAR,

ADC_TOP_10V);

 if (dllReturn)
 {
 printf("Error configuring ADC channel %d\n", ch);
 exit(dllReturn);
 }
 else
 printf("ADC channel %d configured\n", ch);

4.5.2 int AdcGetChannelValue(unsigned int device, unsigned int channel, unsigned

short *value)
Measures and returns the 16-bit value for the specified ADC channel and stores it in the
memory location provided by the parameter value.

 // read ADC value on channel 3

 unsigned int dev = 1;
 unsigned int ch = 3;
 unsigned short adcValue;

 dllReturn = AdcGetChannelValue(dev, ch, &adcValue);

 if (dllReturn)
 {
 printf("Error reading ADC value\n");
 exit(dllReturn);
 }
 else
 printf("ADC channel %d value is %04x ... ", ch, adcValue);

4.5.3 int AdcGetChannelVoltage(unsigned int device, unsigned int channel, float

*voltage)
Measures and returns the voltage for the specified ADC channel and stores it in the memory
location provided by the parameter voltage.

 // read ADC voltage on channel 2

 unsigned int dev = 1;
 unsigned int ch = 2;
 unsigned short adcVoltage;

 dllReturn = AdcGetChannelVoltage(dev, ch, &adcVoltage);

 if (dllReturn)
 {

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 9
Rev 4.0

 printf("Error reading ADC voltage\n");
 exit(dllReturn);
 }
 else
 printf("ADC channel %d voltage is %.4f ... ", ch, adcVoltage);

4.5.4 int AdcGetAllChannelValues(unsigned int device, unsigned short *valBuf)
Measures and returns the value for all sixteen ADC channels and stores them in the memory
array provided by the parameter valBuf.

 // read ADC voltage on all channels

 unsigned int dev = 1;
 unsigned short adcValue[16];

 dllReturn = AdcGetAllChannelValues(dev, adcValue);

 if (dllReturn)
 {
 printf("Error reading all ADC values\n");
 exit(dllReturn);
 }
 else
 for (int ch = 0; ch < 16; ch++)

 printf("ADC channel %d voltage is %04x ... ", ch, adcValue[ch]);

4.5.5 int AdcGetAllChannelVoltages(unsigned int device, float *voltBuf)
Measures and returns the voltage for all sixteen ADC channels and stores them in the
memory array provided by the parameter voltBuf.

 // read ADC voltage on all channels

 unsigned int dev = 1;
 float adcVoltage[16];

 dllReturn = AdcGetAllChannelVoltages(dev, adcVoltage);

 if (dllReturn)
 {
 printf("Error reading all ADC voltages\n");
 exit(dllReturn);
 }
 else
 for (int ch = 0; ch < 16; ch++)

 printf("ADC channel %d voltage is %.4f ... ", ch, adcVoltage[ch]);

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 10
Rev 4.0

4.5.6 int AdcAutoGetChannelVoltage(unsigned int device, unsigned int channel,
float *voltage)

This function selects the ADC mode based on the voltage input on the specified channel.
This provides the most accurate voltage measurement. Once the mode is set, it measures and
returns the voltage in the memory location provided by the parameter voltage. This function
eliminates the need to set the channel mode before doing a read of a voltage.

 // auto read ADC voltage on channel 7

 unsigned int dev = 1;
 unsigned int ch = 7;
 float adcVoltage;

 dllReturn = AdcAutoGetChannelVoltage(dev, ch, adcVoltage);

 if (dllReturn)
 {
 printf("Error reading ADC voltage\n");
 exit(dllReturn);
 }
 else
 printf("ADC channel %d voltage is %.4f ... ", ch, adcVoltage);

4.5.7 int AdcConvertSingleChannelRepeated(unsigned int device, unsigned int

channel, int count, unsigned short *valBuf)
This function measures the same ADC channel the number of times specified in the variable
count. Each measurement value is stored in the memory array provided by the parameter
valBuf. The user must ensure that the size of the array provides enough space for the entire
series of measurements.

 // read channel 15 ADC value 16x

 unsigned int dev = 1;
 unsigned int ch = 15;
 unsigned short buffer[16];
 int cnt = sizeof(buffer) / sizeof(unsigned short);
 float adcVoltage;

 dllReturn = AdcConvertSingleChannelRepeated(dev, ch, cnt, buffer);

 if (dllReturn)
 {
 printf("Error reading ADC channel 15\n");
 exit(dllReturn);
 }
 else
 for (int i = 0; i < cnt; i++)

 printf("ADC channel %d voltage is %04x ... ", ch, buffer[i]);

4.5.8 int AdcBufferedChannelConversions(unsigned int device, unsigned int

*chanBuf, unsigned short *outBuf)
This function measures a series of ADC channels and returns the value for each measurement.
An array of channels to be measured is provided in the variable chanBuf. This array must be

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 11
Rev 4.0

terminated with a 0xFF value. A second array is provided to store the measured values with
the variable outBuf. To guarantee enough storage, this array must be at least one less than the
size of the chanBuf array.

 // provide arrays for function

 unsigned int dev = 1;
 unsigned int chanBuf[] = { 1, 5, 7, 3, 8, 10, 11, 12, 8, 14, 0xFF };
 unsigned short outBuf[sizeof(chanBuf) - 1];

 // buffered channel conversions
 dllReturn = AdcBufferedChannelConversions(dev, chanBuf, outBuf);

 if (dllReturn)
 {
 printf("Error reading series of channels\n");
 exit(dllReturn);
 }
 else
 for (int i = 0; i < (sizeof(chanBuf) / sizeof(unsigned int)) - 1; i++)
 printf("ADC Channel %d value read is %04x\n", chanBuf[i], outBuf[i]);

4.5.9 int AdcConvertToVolts(unsigned int device, unsigned int channel, int value,

float *voltage)
This function converts a 16-bit measured value to a voltage. This function can be used with
other functions that return a 16-bit value. The mode of the specified channel determines the
conversion factors used. For the previous example, we can convert all the returned values
using the following code.

 // provide arrays for function

 unsigned int dev = 1;
 unsigned int chanBuf[] = { 1, 5, 7, 3, 10, 11, 12, 14, 0xFF };
 unsigned short outBuf[sizeof(chanBuf) - 1];
 float temp;

 // buffered channel conversions
 dllReturn = AdcBufferedChannelConversions(dev, chanBuf, outBuf);

 if (dllReturn)
 {
 printf("Error reading series of channels\n");
 exit(dllReturn);
 }
 else
 for (int i = 0; i < (sizeof(chanBuf) / sizeof(unsigned int)) - 1; i++)
 {
 AdcConvertToVolts(dev, chanBuf[i], buffer[i], &temp);
 printf("ADC Channel %d voltage read is %.5f\n", chanBuf[i], temp);
 }

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 12
Rev 4.0

4.5.10 int AdcEnableInterrupt(unsigned int device, unsigned int channel)
This function is used to enable interrupts for a specific ADC device. An ADC generates an
interrupt when a channel conversion is complete. This eliminates the need for the code to poll
the ready bit to indicate when the conversion is complete.

If interrupts are enabled for a specific channel, then interrupts are enabled for all channels on
that device. ADC device 1 supports channels 0 to 7 and ADC device 2 supports channels 8 to
15.

 // selecting channel 12 will enable interrupts for channels 8-15

 unsigned int dev = 1;
 unsigned int ch = 12;

 dllReturn = AdcEnableInterrupt(dev, ch);

 if (dllReturn)
 {
 printf("Error enabling interrupts for ADC2\n");
 exit(dllReturn);
 }
 else
 printf("Interrupts enabled for ADC2\n");

4.5.11 int AdcDisableInterrupt(unsigned int device, unsigned int channel)
This function is used to disable interrupts for a specific ADC device. If interrupts are
disabled for a specific channel, then interrupts are disabled for all channels on that device.
ADC device 1 supports channels 0 to 3 and ADS device 2 supports channels 4 to 7.

 // selecting channel 2 will disable interrupts for channels 0-7

 unsigned int dev = 1;
 unsigned int ch = 2;

 dllReturn = AdcDisableInterrupt(dev, ch);

 if (dllReturn)
 {
 printf("Error disabling interrupts for ADC1\n");
 exit(dllReturn);
 }
 else
 printf("Interrupts disabled for ADC1\n");

4.5.12 int AdcWaitForConversion(unsigned int device, unsigned int channel,

unsigned short *value, unsigned long timeout)
This function forces a process to wait for a conversion to complete on a specific ADC
channel that has been enabled for interrupts. The function will wait until an interrupt does
occur and then complete the conversion by returning the measured value on that channel.
This function will not stop the execution of driver functions in another thread.

The timeout parameter provides a safeguard against system lockup. The value entered
provides a time out in milliseconds. If no interrupt occurs before the time-out expires, the

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 13
Rev 4.0

pending operation is canceled. To disable the timeout feature, use INFINITE as the timeout
parameter.

 // wait for interrupt on channel 1

 unsigned int dev = 1;
 unsigned int ch = 1;
 unsigned short chValue;
 unsigned long *timeout = 0x1000; // 4096 msec

 // put process to sleep until conversion completes
 dllReturn = AdcWaitForConversion(dev, ch, &chValue, timeout);

 if (dllReturn) {
 printf("Error waiting for conversion on channel %d\n", ch);
 exit(dllReturn);
 }
 else
 printf("ADC Channel %d value is %04x\n", channel, chValue);

4.5.13 int AdcWriteCommand(unsigned int device, unsigned int channel, unsigned

int adcCommand)
This function allows the user to program the ADC Command Register. This register provides
the Input Data Word for one of the ADC devices. The variable adcCommand defines the
signal type and input range for a specific ADC channel. This 8-bit field is defined as follows.
More information for each bit field can be found in the LTC1859 Data Sheet.

 // channel 8 is channel 0 on ADC2
 unsigned int dev = 1;

 unsigned int ch = 8;
 unsigned int cmd = 0x84; // single ended, positive, ch 0, -10V to +10V

 dllReturn = AdcWriteCommand(dev, ch, cmd);

 if (dllReturn) {
 printf("Error writing command to channel %d\n", ch);
 exit(dllReturn);
 }
 else
 printf("Wrote command %02x to ADC Channel %d\n", cmd, ch);

4.5.14 int AdcWaitForReady(unsigned int device, unsigned int channel)
This function allows the user to read the ADC Status Register and determine if the Data
Ready bit has been set. If the function returns a zero, then the ready bit has been set and the
data register contains valid data. If the function returns a value of TIMEOUT_ERROR (5),
the ready bit was never set.

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 14
Rev 4.0

 // wait for ready on channel 4

 unsigned int dev = 1;
 unsigned int ch = 4;

 dllReturn = AdcWaitForReady(dev, ch);

 if (!dllReturn)
 printf("Ready returned for channel %d\n", ch);
 else if (dllReturn == TIMEOUT_ERROR)
 printf("Ready not returned for channel %d\n", ch);
 else {
 printf("Error waiting for ready on channel %d\n", ch);
 exit(dllReturn);
 }

4.5.15 int AdcReadData(unsigned int device, unsigned int channel, unsigned short

*adcData)
This function allows the user to read the ADC Data Registers. The 16-bit value is returned in
the variable adcData. This should only be used if the AdcWaitForReady function completes
successfully.

 unsigned int dev = 1;
 unsigned int ch = 12;
 unsigned short data;

 dllReturn = AdcReadData(dev, ch, &data);

 if (dllReturn)
 {
 printf("Error reading data from channel %d\n", ch);
 exit(dllReturn);
 }
 else
 printf("ADC channel %d value is %04x ... ", ch, data);

4.5.16 int AdcStartConversion(unsigned int device, unsigned int channel)
This function combines the AdcWriteCommand and AdcWaitForReady functions into a
single call. It performs a complete conversion cycle except for reading the output data. This
function can be used as a dummy conversion to align the data output to the current time.

 unsigned int dev = 1;
 unsigned int ch = 15;

 dllReturn = AdcStartConversion(dev, ch);

 if (dllReturn)
 {
 printf("Error performing a conversion from channel %d\n", ch);
 exit(dllReturn);
 }
 else

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 15
Rev 4.0

 printf("ADC Conversion complete on channel %d\n", ch);

4.6 Generic Functions

4.6.1 int CloseSession(unsigned int device)
This function is used to disable the pcmmioad device and close the driver when complete. If
a zero is returned, the driver is closed. Otherwise there was an error and the driver is still
open.

 unsigned int dev = 1;

 if (CloseSession(dev))
 printf(“Error closing driver\n”);

4.7 Every function returns a zero or a positive integer value indicating success or failure. If a
zero is returned, the function has completed successfully. If a failure occurs, the specific value
returned provides more clarity as to the failure mechanism.

4.7.1 DRIVER_ERROR (1)
This error indicates that some function within the driver has failed. This error indicates that
one of the IOCTL calls within the driver itself has not completed successfully. Using
Windows Device Manager, verify that the driver is loaded and has no resource conflicts.

4.7.2 ACCESS_ERROR (2)
This error indicates the following conditions are present:

 The driver has tried to write to a DIO bit defined as an input
 The driver attempts to enable interrupts for a DIO bit defined as an output
 The driver attempts to write to a locked DIO port
 The driver attempts to change a bit in a locked DIO port
 The driver is unable to start a DioWaitForInterrupt, AdcWaitForConversion, or

DacWaitForUpdate call

4.7.3 INVALID_HANDLE (3)
This error indicates that the driver has not initialized or closed. The driver attempts to obtain
a handle to the PCM-MIO-AD device, and this error indicates that the handle was not
obtained. Verify that the driver has loaded successfully.

4.7.4 INVALID_PARAMETER (4)
This error indicates that one of the parameters in a DLL function is out of bounds.

4.7.5 TIMEOUT_ERROR (5)
This error indicates the following conditions are present:

 Either the DioWaitForInterrupt or AdcWaitForConversion function has exceeded the
provided timeout value before an interrupt occurred

 An ADC conversion failed due to the ready bit never being set
 The function AdcWaitForReady never had the ready bit set

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 16
Rev 4.0

5 Sample Applications
The driver package provides sample Windows console applications for most of the functions
provided in the driver package. The source code and an executable file is provided for each
application.

5.1 DIO Applications

5.1.1 flash
The flash sample application sets and clears each bit in sequential order. All bits are
configured as outputs, and then each bit is toggled with a 200 msec delay. If any error occurs
during execution, the error is reported and the application is terminated.

5.1.2 poll
The poll sample application tests DIO interrupts. The device is opened and all bits of the first
three ports are configured as inputs. Interrupts are enabled for each input bit alternating
between rising and falling edge. A separate thread is created that calls the
DioWaitForInterrupt function. If any of the input bits are toggled with the proper edge
polarity, the specific interrupt is displayed on the console. Any keystroke will terminate the
program and report the total number of interrupts.

5.2 ADC Applications

5.2.1 getvolt
The getvolt sample application configures the selected channel for ±10V bi-polar and reads
and displays the voltage on that channel using the AdcGetChannelVoltage function. The
channel number is provided as a command line argument. If any error occurs during
execution, the error is reported and the application is terminated.

5.2.2 getvolt_irq
The getvolt_irq sample application uses interrupts to read the voltage on each channel
sequentially. All channels are configured for ±10V bi-polar and both ADC devices are
enabled for interrupts. Two separate threads are created for each ADC device that calls the
AdcWaitForConversion function for each channel sequentially every 50 msec. If successful,
the voltage read is displayed. Any keystroke will terminate the program and report the total
number of interrupts.

5.2.3 getall
The getall sample application configures all channels for ±10V bi-polar and uses the
AdcGetAllChannelVoltages function to read and display the voltage on all channels. If any
error occurs during execution, the error is reported and the application is terminated.

5.2.4 adcBuff
The adcBuff sample application configures all channels for ±10V bi-polar and uses the
AdcBufferedChannelConversions function to read and display the voltage for the channel
sequence provide by the channel array variable. The AdcConvertToVolts function is also

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 17
Rev 4.0

demonstrated. If any error occurs during execution, the error is reported and the application is
terminated.

5.2.5 adcRepeat
The adcRepeat sample application configures the selected channel ±10V bi-polar and uses
the AdcConvertSingleChannelRepeated function to read and display the voltage on that
channel for the number of times specified in the function arguments. The channel number is
provided as a command line argument. The AdcConvertToVolts function is also
demonstrated. If any error occurs during execution, the error is reported and the application is
terminated.

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 18
Rev 4.0

Appendix A: pcmmioadDLL.h

//**
//
// Copyright 2018 by WinSystems Inc.
//
//**
//
// Name : pcmmioadDLL.h
//
// Project : PCM-MIO-AD Windows DLL
//
// Author : Paul DeMetrotion
//
//**
//
// Date Rev Description
// -------- ------- ---
// 03/09/18 1.0 Original Release of DLL
//
//**

#ifndef _PCMMIOAD_DLL_H_
#define _PCMMIOAD_DLL_H_

#if defined DLL_EXPORT
#define DECLDIR __declspec(dllexport)
#else
#define DECLDIR __declspec(dllimport)
#endif // DLL_EXPORT

extern "C"
{
 DECLDIR int InitializeSession(unsigned int device);
 DECLDIR int CloseSession(unsigned int device);

 // DIO functions
 DECLDIR int DioResetDevice(unsigned int device);
 DECLDIR int DioSetIoMask(unsigned int device, unsigned int *portState);
 DECLDIR int DioGetIoMask(unsigned int device, unsigned int *portState);
 DECLDIR int DioReadAllPorts(unsigned int device, unsigned int *readValueArray);
 DECLDIR int DioReadPort(unsigned int device, int port, unsigned int *readValue);
 DECLDIR int DioReadBit(unsigned int device, int bit, unsigned int *bitValue);
 DECLDIR int DioSetBit(unsigned int device, int bit);
 DECLDIR int DioClearBit(unsigned int device, int bit);
 DECLDIR int DioWritePort(unsigned int device, int port, unsigned int writeValue);
 DECLDIR int DioWriteBit(unsigned int device, int bit, unsigned int bitValue);
 DECLDIR int DioEnableInterrupt(unsigned int device, int bit, int edge);
 DECLDIR int DioDisableInterrupt(unsigned int device, int bit);
 DECLDIR int DioGetInterrupt(unsigned int device, unsigned int *irqArray);
 DECLDIR int DioWaitForInterrupt(unsigned int device, unsigned int *irqArray, unsigned
long timeout);
 DECLDIR int DioLockPort(unsigned int device, int port);
 DECLDIR int DioUnlockPort(unsigned int device, int port);

 // ADC functions

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 19
Rev 4.0

 DECLDIR int AdcSetChannelMode(unsigned int device, unsigned int channel, int mode,
int duplex, int range);
 DECLDIR int AdcGetChannelValue(unsigned int device, unsigned int channel, unsigned
short *value);
 DECLDIR int AdcGetChannelVoltage(unsigned int device, unsigned int channel, float
*voltage);
 DECLDIR int AdcGetAllChannelValues(unsigned int device, unsigned short *valBuf);
 DECLDIR int AdcGetAllChannelVoltages(unsigned int device, float *voltBuf);
 DECLDIR int AdcAutoGetChannelVoltage(unsigned int device, unsigned int channel, float
*voltage);
 DECLDIR int AdcConvertSingleChannelRepeated(unsigned int device, unsigned int
channel, int count, unsigned short *valBuf);
 DECLDIR int AdcBufferedChannelConversions(unsigned int device, unsigned int *chanBuf,
unsigned short *outBuf);
 DECLDIR int AdcConvertToVolts(unsigned int device, unsigned int channel, int value,
float *voltage);
 DECLDIR int AdcEnableInterrupt(unsigned int device, unsigned int channel);
 DECLDIR int AdcDisableInterrupt(unsigned int device, unsigned int channel);
 DECLDIR int AdcWaitForConversion(unsigned int device, unsigned int channel, unsigned
short *value, unsigned long timeout);
 DECLDIR int AdcWriteCommand(unsigned int device, unsigned int channel, unsigned int
adcCommand);
 DECLDIR int AdcWaitForReady(unsigned int device, unsigned int channel);
 DECLDIR int AdcReadData(unsigned int device, unsigned int channel, unsigned short
*adcData);
 DECLDIR int AdcStartConversion(unsigned int device, unsigned int channel);
}

typedef enum {
 SUCCESS = 0,
 DRIVER_ERROR,
 ACCESS_ERROR,
 INVALID_HANDLE,
 INVALID_PARAMETER,
 TIMEOUT_ERROR
} ErrorCodes;

typedef enum {
 FALLING_EDGE = 0,
 RISING_EDGE
} IrqEdge;

typedef enum {
 ADC_DIFFERENTIAL = 0,
 ADC_SINGLE_ENDED
} AdcMode;

typedef enum {
 ADC_CH0_SELECT = 0,
 ADC_CH2_SELECT,
 ADC_CH4_SELECT,
 ADC_CH6_SELECT,
 ADC_CH1_SELECT,
 ADC_CH3_SELECT,
 ADC_CH5_SELECT,
 ADC_CH7_SELECT
} AdcChSelect;

 PCM-MIO-G-AD-1 Windows Device Driver Package

05/30/2018 20
Rev 4.0

typedef enum {
 ADC_BIPOLAR = 0,
 ADC_UNIPOLAR
} AdcDuplex;

typedef enum {
 ADC_TOP_5V = 0,
 ADC_TOP_10V
} AdcRange;

#endif // _PCMMIOAD_DLL_H_

