
04/27/2018 1

Rev 4.0

PCM-MIO-G-1 Windows

Device Driver Package

1 Introduction

1.1 The WinSystems PCM-MIO-G-1 device is a versatile, PC/104 analog input, analog

output, and digital I/O board designed for high accuracy and high channel count analog and

digital I/O. The board is based upon Linear Technologies’ state of the art precision converters

and voltage references which require no external calibration.

1.2 The WS16C48 ASIC provides 48 digital I/O lines addressed through six contiguous

registers. Each I/O line is individually programmable for input, output, or output with read back

operation. The ASIC supports up to 24 event sense lines which can sense a positive or negative

transition on the input. These can be used to generate a system interrupt request.

1.3 The LTC-1859 provides two 8-channel, 16-bit Analog-to-Digital (A/D) converters with

sample-and-hold-circuit support. Input ranges supported are: 0-5V, 0-10V, ±5V and ±10V. The

data sheet is found at http://www.analog.com/media/en/technical-documentation/data-

sheets/185789fb.pdf.

1.4 The LTC-2704 provides two 4-channel, 12-bit Digital-to-Analog (D/A) converters.

Output ranges supported are: 0-5V, 0-10V, ±5V or ±10V, +/-2.5V, and -2.5V to 7.5V. The data

sheet is found at http://www.analog.com/media/en/technical-documentation/data-

sheets/2704fd.pdf.

1.5 For more detailed explanations of the PCM-MIO-G-1 software requirements, refer to the

PCM-MIO Product Manual found at https://www.winsystems.com/wp-content/uploads/product-

manuals/pcm-mio-g-1-pm.pdf.

1.6 The PCM-MIO-G-1 driver package is designed for and has been verified with 32-bit and

64-bit versions of Microsoft WES 7 and Windows 10.

2 Installation

2.1 Before installing the device, verify that the board jumpers are configured for the desired

I/O base address. In the BIOS set-up menus, verify that the selected resources are not used by

other devices.

2.2 The driver, support files, and console applications are supplied in a zip file. The

following files are included:

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 2

Rev 4.0

• pcmmio.sys – Windows device driver

• pcmmio.inf – Windows installation file

• pcmmio.cat – Windows catalog file

• WdfCoinstaller01011.dll – Windows co-installer

• pcmmioDLL.dll – Windows DLL

• pcmmioDLL.lib – Windows library file

• pcmmioDLL.h – driver include file

• flash.cpp – Windows application source

• poll.cpp – Windows application source

• getvolt.cpp – Windows application source

• getvolt_irq.cpp – Windows application source

• getall.cpp – Windows application source

• adcBuff.cpp – Windows application source

• adcRepeat.cpp – Windows application source

• setvolt.cpp – Windows application source

• setvolt_irq.cpp – Windows application source

• dacBuff.cpp – Windows application source

• flash.exe – Windows application

• poll.exe – Windows application

• getvolt.exe – Windows application

• getvolt_irq.exe – Windows application

• getall.exe – Windows application

• adcBuff.exe – Windows application

• adcRepeat.exe – Windows application

• setvolt.exe – Windows application

• setvolt_irq.exe – Windows application

• dacBuff.exe – Windows application

• vcredist_x86 or vcredist_x64 - Microsoft Visual C++ Redistributable

2.3 Installation is accomplished via the ‘Add legacy hardware’ selection found in the Action

menu of the Windows Device Manager. Navigate to the drive and folder containing the driver

files and select pcmmio.inf. The Windows installer will copy the pcmmio.sys driver file to the

appropriate directory in the Windows installation.

2.4 If multiple boards are stacked, the driver must be loaded for each device. Each instance

of the driver should be configured to match the jumper configuration. The I/O range is 32

sequential bytes.

2.5 In Device Manager, the PCM-MIO Device(s) will appear under the System Devices item.

The desired hardware configuration can be selected under the Resources tab of the PCM-MIO

Device Properties window. A reboot may be required after resource selection is complete.

2.6 The included console applications can be used to verify driver installation and

functionality. Usage of the programs is described later in this document.

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 3

Rev 4.0

3 Driver Overview and Architecture

3.1 The file pcmmio.sys is a Windows Driver Foundation kernel-mode (KMDF) driver which

facilitates access to the underlying hardware.

3.2 The file pcmmioDLL.dll is a Windows Dynamic-Link Library which provides more user-

friendly functions to access the device.

3.3 The driver utilizes the I/O Control (IOCTL) Request framework to control the register set

of each PCM-MIO device. Data is passed to and from the driver utilizing input and output

buffers.

4 Driver Usage

4.1 The pcmmioDLL.h file included in the driver distribution contains the function definitions

to be used by an application to communicate with the pcmmio driver. This file is included in

Appendix A: pcmmioDLL.h.

4.2 An application calls the function InitializeSession to open the driver. This is required

before any of the other functions can be called. The following example opens the WinSystems

pcmmio driver. If a zero is returned, then the driver has been successfully initialized. Any other

returned value indicates that an error has occurred and the device is unusable.

#define DEVICE 1 // access device 1

 if (InitializeSession(DEVICE))

 printf(“Error opening device\n”);

4.3 Once the driver is initialized, the other functions can be used to control the PCM-MIO.

Following is a description and sample code for each function. Each function requires a device

parameter which selects the desired PCM-MIO to access.

All functions below will follow the same return value model. If a zero is returned, the function

was successful. Otherwise there was an error and the function did not complete. Specific error

codes are defined later in this document.

4.4 DIO Functions

4.4.1 int DioResetDevice(unsigned int device)

This function resets the WS16C48 ASIC to a known state. All bits are defined as outputs at

state zero and all interrupts are disabled. Any locked port is unlocked.

 if (DioResetDevice(2)) // reset device 2

 printf(“Error resetting device\n”);

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 4

Rev 4.0

4.4.2 int DioSetIoMask(unsigned int device, unsigned int *portState)

Configures the mask for all digital I/O (DIO) ports provided in the memory location

portState. A mask bit defined as a zero is an input, and a mask bit defined as a one is an

output.

 unsigned int dev = 1;

 unsigned int mask[6]; // 48 I/O = 6 Ports

 mask[0] = 0xFF; // all bits output

 mask[1] = 0x00; // all bits input

 mask[2] = 0xF0; // upper nibble output, lower nibble input

 mask[3] = 0xFF; // all bits output

 mask[4] = 0xAA; // alternating input/output bits

 mask[5] = 0x55; // alternating input/output bits

 if (DioSetIoMask(dev, mask))

 printf(“Error configuring port masks\n”);

4.4.3 int DioGetIoMask(unsigned int device, unsigned int *portState)

Retrieves the mask for all DIO ports and stores them in the memory locations provided by

the array parameter portState. A mask bit defined as a zero is an input, and a mask bit

defined as a one is an output.

 unsigned int dev = 3;

 unsigned int mask[6]; // 48 I/O = 6 Ports

 if (DioGetIoMask(dev, mask))

 printf(“Error reading port masks\n”);

4.4.4 int DioReadAllPorts(unsigned int device, unsigned int *readValueArray)

Reads the current value of all available DIO ports and stores them in the memory locations

provided by the array parameter readValueArray.

 unsigned int dev = 2;

 unsigned int read_value[6]; // 48 I/O = 6 Ports

 if (DioReadAllPorts(dev, read_value))

 printf(“Error reading all ports\n”);

4.4.5 int DioReadPort(unsigned int device, int port, unsigned int *readValue)

Reads the current value of the selected DIO port and stores it in the memory location

provided by the parameter readValue.

 unsigned int dev = 1;

 unsigned int read_value;

 int port = 1;

 if (DioReadPort(dev, port, &read_value))

 printf(“Error reading port %d\n”, dev, port);

 else

 printf(“Port %d = 0x%02x\n”, dev, port, read_value);

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 5

Rev 4.0

4.4.6 int DioReadBit(unsigned int device, int bit, unsigned int *bitValue)

Reads the current value (0 or 1) of the selected DIO bit and stores it in the memory location

provided by the parameter bitValue.

 unsigned int dev = 1;

 unsigned int bit_value;

 int bit = 40;

 if (DioReadBit(dev, bit, &bit_value))

 printf(“Error reading bit %d\n”, dev, bit);

 else

 printf(“Bit %d = %d\n”, dev, port, bit_value);

4.4.7 int DioSetBit(unsigned int device, int bit)

Sets the selected DIO bit. If the bit is part of a locked port, an ACCESS_ERROR value is

returned.

 unsigned int dev = 4;

 int bit = 24;

 if (DioSetBit(dev, bit))

 printf(“Error setting bit %d\n”, dev, bit);

4.4.8 int DioClearBit(unsigned int device, int bit)

Clears the selected DIO bit. If the bit is part of a locked port, an ACCESS_ERROR value is

returned.

 unsigned int dev = 1;

 int bit = 0;

 if (DioClearBit(dev, bit))

 printf(“Error clearing bit %d\n”, dev, bit);

4.4.9 int DioWritePort(unsigned int device, int port, unsigned int writeValue)

Writes the value in the parameter writeValue to the selected DIO port. If the port is locked,

an ACCESS_ERROR value is returned.

 unsigned int dev = 2;

 unsigned int write_value = 0x55;

 int port = 4;

 if (DioWritePort(dev, port, write_value))

 printf(“Error writing to port %d\n”, dev, port);

4.4.10 int DioWriteBit(unsigned int device, int bit, unsigned int bitValue)

Writes the value specified by the parameter bitValue (0 or 1) to the selected DIO bit. If the

bit is part of a locked port, an ACCESS_ERROR value is returned.

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 6

Rev 4.0

 unsigned int dev = 1;

 int bit = 32;

 unsigned int bit_value = 1;

 if (DioWriteBit(dev, bit, bit_value))

 printf(“Error writing bit %d\n”, dev, bit);

4.4.11 int DioEnableInterrupt(unsigned int device, int bit, int edge)

This function enables interrupts for the selected DIO bit. The edge parameter selects a rising

or falling edge trigger for the interrupt. An enumerated value is provided which defines valid

values for the parameter edge (FALLING_EDGE = 0 and RISING_EDGE = 1).

 unsigned int dev = 2;

 int bit = 0;

 if (DioEnableInterrupt(dev, bit, RISING_EDGE))

 printf(“Error enabling interrupts for bit %d\n”, device, bit);

else

 printf(“Interrupts enabled for bit %d\n”, dev, bit);

4.4.12 int DioDisableInterrupt(unsigned int device, int bit)

This function disables interrupts for the selected DIO bit.

 unsigned int dev = 2;

 int bit = 23;

 if (DioDisableInterrupt(dev, bit))

 printf(“Error disabling interrupts for bit %d\n”, device, bit);

else

 printf(“Interrupts disabled for bit %d\n”, dev, bit);

4.4.13 int DioGetInterrupt(unsigned int device, unsigned int *irqArray)

This function retrieves the interrupt status for all 24 DIO bits and stores them in the memory

locations provided by the parameter irqArray. Any bit that is set indicates that an interrupt

has occurred on that DIO bit. After being read, the interrupt status on all interruptible bits is

reset to zero.

 unsigned int dev = 4;

 unsigned int irq[3]; // 24 IRQ = 3 Ports

 if (DioGetInterrupt(dev, irq))

 printf(“Error retrieving interrupts for device %d\n”, dev);

4.4.14 int DioWaitForInterrupt(unsigned int device, unsigned int *irqArray,

unsigned long timeout)

This function forces the driver to wait for an interrupt on any DIO bit that has been enabled

for interrupts. If an interrupt already exists on a bit, the function will act like the GetInterrupt

and immediately return and store the interrupt status in the memory locations provided by the

parameter irqArray.

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 7

Rev 4.0

If no interrupts are present, the function will wait until an interrupt does occur. This function

will not stop the execution of driver functions in another thread.

The timeout parameter provides a safeguard against system lockup. The value entered

provides a time out in milliseconds. If no interrupt occurs before the time-out expires, the

pending operation is canceled. To disable the timeout feature, use INFINITE as the timeout

parameter.

 unsigned int dev = 1;

 unsigned int irq[3]; // 24 IRQ = 3 Ports

 long timeout = 0x1000; // timeout = 4096 ms

 if (DioWaitForInterrupt(dev, irq, timeout))

 printf(“Error waiting for interrupts from device %d\n”, dev);

4.4.15 int DioLockPort(unsigned int device, int port)

Locks the selected DIO port which prevents writing to any bits in that port. The register can

still be read.

 unsigned int dev = 1;

 int port = 5;

 if (DioLockPort(dev, port))

 printf(“Error locking port %d\n”, dev, port);

 else

 printf(“Port %d locked for writing\n”, dev, port);

4.4.16 int DioUnlockPort(unsigned int device, int port)

Unlocks the selected DIO port which enables writing to any bits in that port.

 unsigned int dev = 1;

 int port = 0;

 if (DioUnlockPort(dev, port))

 printf(“Error unlocking port %d\n”, dev, port);

 else

 printf(“Port %d unlocked\n”, dev, port);

4.5 ADC Functions

The PCM-MIO uses two Linear Tech LTC-1859 8-channel A/D converters. Each device is

independently software configurable to support the listed input modes and ranges. The devices

use a full-duplex serial interface which transmits and receives data simultaneously. An 8-bit

command is shifted into the ADC interface to configure it for the next conversion. At the same

time, the data from the previous conversion is shifted out of device. Consequently, the

conversion result is delayed by one conversion from the command word. Consecutive

conversions of the same channel are required to obtain the current voltage measurement. Most of

the functions defined include this functionality. For example, the function AdcGetChannelValue

will return the current value on the specified channel.

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 8

Rev 4.0

4.5.1 int AdcSetChannelMode(unsigned int device, unsigned int channel, int mode,

int duplex, int range)

Configures the input range of the selected ADC channel. The mode variable configures each

pair of channels as two single ended inputs or a single differential input. The valid selections

are ADC_SINGLE_ENDED and ADC_DIFFERENTIAL. The duplex variable configures

the channel for a unipolar or bipolar conversion. The valid selections are ADC_UNIPOLAR

and ADC_BIPOLAR. The range variable determines the input span for the conversion. The

valid selections are ADC_TOP_5V and ADC_TOP_10V.

 // configure channel 4 for single ended ±10V

 unsigned int dev = 1;

 unsigned int ch = 4;

 dllReturn = AdcSetChannelMode(dev, ch, ADC_SINGLE_ENDED, ADC_BIPOLAR,

ADC_TOP_10V);

 if (dllReturn)

 {

 printf("Error configuring ADC channel %d\n", ch);

 exit(dllReturn);

 }

 else

 printf("ADC channel %d configured\n", ch);

4.5.2 int AdcGetChannelValue(unsigned int device, unsigned int channel, unsigned

short *value)

Measures and returns the 16-bit value for the specified ADC channel and stores it in the

memory location provided by the parameter value.

 // read ADC value on channel 3

 unsigned int dev = 1;

 unsigned int ch = 3;

 unsigned short adcValue;

 dllReturn = AdcGetChannelValue(dev, ch, &adcValue);

 if (dllReturn)

 {

 printf("Error reading ADC value\n");

 exit(dllReturn);

 }

 else

 printf("ADC channel %d value is %04x ... ", ch, adcValue);

4.5.3 int AdcGetChannelVoltage(unsigned int device, unsigned int channel, float

*voltage)

Measures and returns the voltage for the specified ADC channel and stores it in the memory

location provided by the parameter voltage.

 // read ADC voltage on channel 2

 unsigned int dev = 1;

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 9

Rev 4.0

 unsigned int ch = 2;

 unsigned short adcVoltage;

 dllReturn = AdcGetChannelVoltage(dev, ch, &adcVoltage);

 if (dllReturn)

 {

 printf("Error reading ADC voltage\n");

 exit(dllReturn);

 }

 else

 printf("ADC channel %d voltage is %.4f ... ", ch, adcVoltage);

4.5.4 int AdcGetAllChannelValues(unsigned int device, unsigned short *valBuf)

Measures and returns the value for all sixteen ADC channels and stores them in the memory

array provided by the parameter valBuf.

 // read ADC voltage on all channels

 unsigned int dev = 1;

 unsigned short adcValue[16];

 dllReturn = AdcGetAllChannelValues(dev, adcValue);

 if (dllReturn)

 {

 printf("Error reading all ADC values\n");

 exit(dllReturn);

 }

 else

 for (int ch = 0; ch < 16; ch++)

 printf("ADC channel %d voltage is %04x ... ", ch, adcValue[ch]);

4.5.5 int AdcGetAllChannelVoltages(unsigned int device, float *voltBuf)

Measures and returns the voltage for all sixteen ADC channels and stores them in the

memory array provided by the parameter voltBuf.

 // read ADC voltage on all channels

 unsigned int dev = 1;

 float adcVoltage[16];

 dllReturn = AdcGetAllChannelVoltages(dev, adcVoltage);

 if (dllReturn)

 {

 printf("Error reading all ADC voltages\n");

 exit(dllReturn);

 }

 else

 for (int ch = 0; ch < 16; ch++)

 printf("ADC channel %d voltage is %.4f ... ", ch, adcVoltage[ch]);

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 10

Rev 4.0

4.5.6 int AdcAutoGetChannelVoltage(unsigned int device, unsigned int channel,

float *voltage)

This function selects the ADC mode based on the voltage input on the specified channel.

This provides the most accurate voltage measurement. Once the mode is set, it measures and

returns the voltage in the memory location provided by the parameter voltage. This function

eliminates the need to set the channel mode before doing a read of a voltage.

 // auto read ADC voltage on channel 7

 unsigned int dev = 1;

 unsigned int ch = 7;

 float adcVoltage;

 dllReturn = AdcAutoGetChannelVoltage(dev, ch, adcVoltage);

 if (dllReturn)

 {

 printf("Error reading ADC voltage\n");

 exit(dllReturn);

 }

 else

 printf("ADC channel %d voltage is %.4f ... ", ch, adcVoltage);

4.5.7 int AdcConvertSingleChannelRepeated(unsigned int device, unsigned int

channel, int count, unsigned short *valBuf)

This function measures the same ADC channel the number of times specified in the variable

count. Each measurement value is stored in the memory array provided by the parameter

valBuf. The user must ensure that the size of the array provides enough space for the entire

series of measurements.

 // read channel 15 ADC value 16x

 unsigned int dev = 1;

 unsigned int ch = 15;

 unsigned short buffer[16];

 int cnt = sizeof(buffer) / sizeof(unsigned short);

 float adcVoltage;

 dllReturn = AdcConvertSingleChannelRepeated(dev, ch, cnt, buffer);

 if (dllReturn)

 {

 printf("Error reading ADC channel 15\n");

 exit(dllReturn);

 }

 else

 for (int i = 0; i < cnt; i++)

 printf("ADC channel %d voltage is %04x ... ", ch, buffer[i]);

4.5.8 int AdcBufferedChannelConversions(unsigned int device, unsigned int

*chanBuf, unsigned short *outBuf)

This function measures a series of ADC channels and returns the value for each measurement.

An array of channels to be measured is provided in the variable chanBuf. This array must be

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 11

Rev 4.0

terminated with a 0xFF value. A second array is provided to store the measured values with

the variable outBuf. To guarantee enough storage, this array must be at least one less than the

size of the chanBuf array.

 // provide arrays for function

 unsigned int dev = 1;

 unsigned int chanBuf[] = { 1, 5, 7, 3, 8, 10, 11, 12, 8, 14, 0xFF };

 unsigned short outBuf[sizeof(chanBuf) - 1];

 // buffered channel conversions

 dllReturn = AdcBufferedChannelConversions(dev, chanBuf, outBuf);

 if (dllReturn)

 {

 printf("Error reading series of channels\n");

 exit(dllReturn);

 }

 else

 for (int i = 0; i < (sizeof(chanBuf) / sizeof(unsigned int)) - 1; i++)

 printf("ADC Channel %d value read is %04x\n", chanBuf[i], outBuf[i]);

4.5.9 int AdcConvertToVolts(unsigned int device, unsigned int channel, int value,

float *voltage)

This function converts a 16-bit measured value to a voltage. This function can be used with

other functions that return a 16-bit value. The mode of the specified channel determines the

conversion factors used. For the previous example, we can convert all the returned values

using the following code.

 // provide arrays for function

 unsigned int dev = 1;

 unsigned int chanBuf[] = { 1, 5, 7, 3, 10, 11, 12, 14, 0xFF };

 unsigned short outBuf[sizeof(chanBuf) - 1];

 float temp;

 // buffered channel conversions

 dllReturn = AdcBufferedChannelConversions(dev, chanBuf, outBuf);

 if (dllReturn)

 {

 printf("Error reading series of channels\n");

 exit(dllReturn);

 }

 else

 for (int i = 0; i < (sizeof(chanBuf) / sizeof(unsigned int)) - 1; i++)

 {

 AdcConvertToVolts(dev, chanBuf[i], buffer[i], &temp);

 printf("ADC Channel %d voltage read is %.5f\n", chanBuf[i], temp);

 }

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 12

Rev 4.0

4.5.10 int AdcEnableInterrupt(unsigned int device, unsigned int channel)

This function is used to enable interrupts for a specific ADC device. An ADC generates an

interrupt when a channel conversion is complete. This eliminates the need for the code to poll

the ready bit to indicate when the conversion is complete.

If interrupts are enabled for a specific channel, then interrupts are enabled for all channels on

that device. ADC device 1 supports channels 0 to 7 and ADC device 2 supports channels 8 to

15.

 // selecting channel 12 will enable interrupts for channels 8-15

 unsigned int dev = 1;

 unsigned int ch = 12;

 dllReturn = AdcEnableInterrupt(dev, ch);

 if (dllReturn)

 {

 printf("Error enabling interrupts for ADC2\n");

 exit(dllReturn);

 }

 else

 printf("Interrupts enabled for ADC2\n");

4.5.11 int AdcDisableInterrupt(unsigned int device, unsigned int channel)

This function is used to disable interrupts for a specific ADC device. If interrupts are

disabled for a specific channel, then interrupts are disabled for all channels on that device.

ADC device 1 supports channels 0 to 3 and ADS device 2 supports channels 4 to 7.

 // selecting channel 2 will disable interrupts for channels 0-7

 unsigned int dev = 1;

 unsigned int ch = 2;

 dllReturn = AdcDisableInterrupt(dev, ch);

 if (dllReturn)

 {

 printf("Error disabling interrupts for ADC1\n");

 exit(dllReturn);

 }

 else

 printf("Interrupts disabled for ADC1\n");

4.5.12 int AdcWaitForConversion(unsigned int device, unsigned int channel,

unsigned short *value, unsigned long timeout)

This function forces a process to wait for a conversion to complete on a specific ADC

channel that has been enabled for interrupts. The function will wait until an interrupt does

occur and then complete the conversion by returning the measured value on that channel.

This function will not stop the execution of driver functions in another thread.

The timeout parameter provides a safeguard against system lockup. The value entered

provides a time out in milliseconds. If no interrupt occurs before the time-out expires, the

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 13

Rev 4.0

pending operation is canceled. To disable the timeout feature, use INFINITE as the timeout

parameter.

 // wait for interrupt on channel 1

 unsigned int dev = 1;

 unsigned int ch = 1;

 unsigned short chValue;

 unsigned long *timeout = 0x1000; // 4096 msec

 // put process to sleep until conversion completes

 dllReturn = AdcWaitForConversion(dev, ch, &chValue, timeout);

 if (dllReturn) {

 printf("Error waiting for conversion on channel %d\n", ch);

 exit(dllReturn);

 }

 else

 printf("ADC Channel %d value is %04x\n", channel, chValue);

4.5.13 int AdcWriteCommand(unsigned int device, unsigned int channel, unsigned

int adcCommand)

This function allows the user to program the ADC Command Register. This register provides

the Input Data Word for one of the ADC devices. The variable adcCommand defines the

signal type and input range for a specific ADC channel. This 8-bit field is defined as follows.

More information for each bit field can be found in the LTC1859 Data Sheet.

 // channel 8 is channel 0 on ADC2

 unsigned int dev = 1;

 unsigned int ch = 8;

 unsigned int cmd = 0x84; // single ended, positive, ch 0, -10V to +10V

 dllReturn = AdcWriteCommand(dev, ch, cmd);

 if (dllReturn) {

 printf("Error writing command to channel %d\n", ch);

 exit(dllReturn);

 }

 else

 printf("Wrote command %02x to ADC Channel %d\n", cmd, ch);

4.5.14 int AdcWaitForReady(unsigned int device, unsigned int channel)

This function allows the user to read the ADC Status Register and determine if the Data

Ready bit has been set. If the function returns a zero, then the ready bit has been set and the

data register contains valid data. If the function returns a value of TIMEOUT_ERROR (5),

the ready bit was never set.

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 14

Rev 4.0

 // wait for ready on channel 4

 unsigned int dev = 1;

 unsigned int ch = 4;

 dllReturn = AdcWaitForReady(dev, ch);

 if (!dllReturn)

 printf("Ready returned for channel %d\n", ch);

 else if (dllReturn == TIMEOUT_ERROR)

 printf("Ready not returned for channel %d\n", ch);

 else {

 printf("Error waiting for ready on channel %d\n", ch);

 exit(dllReturn);

 }

4.5.15 int AdcReadData(unsigned int device, unsigned int channel, unsigned short

*adcData)

This function allows the user to read the ADC Data Registers. The 16-bit value is returned in

the variable adcData. This should only be used if the AdcWaitForReady function completes

successfully.

 unsigned int dev = 1;

 unsigned int ch = 12;

 unsigned short data;

 dllReturn = AdcReadData(dev, ch, &data);

 if (dllReturn)

 {

 printf("Error reading data from channel %d\n", ch);

 exit(dllReturn);

 }

 else

 printf("ADC channel %d value is %04x ... ", ch, data);

4.5.16 int AdcStartConversion(unsigned int device, unsigned int channel)

This function combines the AdcWriteCommand and AdcWaitForReady functions into a

single call. It performs a complete conversion cycle except for reading the output data. This

function can be used as a dummy conversion to align the data output to the current time.

 unsigned int dev = 1;

 unsigned int ch = 15;

 dllReturn = AdcStartConversion(dev, ch);

 if (dllReturn)

 {

 printf("Error performing a conversion from channel %d\n", ch);

 exit(dllReturn);

 }

 else

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 15

Rev 4.0

 printf("ADC Conversion complete on channel %d\n", ch);

4.6 DAC Functions

The PCM-MIO contains two Linear Tech LTC-2704 Digital-to-Analog Converter (DAC)

devices. Each device is a 4-channel converter with software selectable output span.

4.6.1 int DacSetChannelVoltage(unsigned int device, unsigned int channel, float

voltage)

This function programs the specified channel to the desired voltage level. The optimal DAC

output range is selected according to the desired voltage. The following example code will

step the voltage on channel 6 from -10V to +10V by one volt in two-second intervals.

 unsigned int dev = 1;

 unsigned int ch = 6;

 float voltage;

 // step through voltages from -10V to 10V

 for (voltage = -10.0; voltage <= 10.0; voltage++) {

 dllReturn = DacSetChannelVoltage(dev, ch, voltage);

 if (dllReturn)

 {

 printf("Error setting DAC channel %d voltage\n", ch);

 exit(dllReturn);

 }

 else

 {

 printf("DAC Channel %d voltage set to %.5f\n", ch, voltage);

 Sleep(2000); // sleep for two seconds

 }

 }

4.6.2 int DacSetChannelOutput(unsigned int device, unsigned int channel,

unsigned short code)

This function programs the specified channel to the desired 16-bit value. The actual voltage

will depend on the current span setting for that channel. No span adjustments are made unlike

the DacSetChannelVoltage function.

 unsigned int dev = 1;

 unsigned int ch = 1;

 unsigned short code = 0x4000;

 dllReturn = DacSetChannelValue(dev, ch, code);

 if (dllReturn)

 {

 printf("Error setting DAC channel %d value\n", ch);

 exit(dllReturn);

 }

 else

 printf("DAC Channel %d value set to %04x\n", ch, code);

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 16

Rev 4.0

4.6.3 int DacSetChannelSpan(unsigned int device, unsigned int channel, unsigned

short span)

This function programs the span value for the specified channel. An enumerated value called

DacSpan provides all valid span values.

DacSpan Voltage Range

DAC_SPAN_UNI5 Unipolar 0V to 5V

DAC_SPAN_UNI10 Unipolar 0V to 10V

DAC_SPAN_BI5 Bipolar -5V to 5V

DAC_SPAN_BI10 Bipolar -10V to 10V

DAC_SPAN_BI2 Bipolar -2.5V to 2.5V

DAC_SPAN_BI7 Bipolar -2.5V to 7.5V

 // set channel 0 span to bipolar -5V to 5V

 unsigned int dev = 1;

 unsigned int ch = 0;

 dllReturn = DacSetChannelSpan(dev, ch, DAC_SPAN_BI5);

 if (dllReturn)

 {

 printf("Error setting DAC span on channel %d\n", ch);

 exit(dllReturn);

 }

4.6.4 int DacBufferedVoltage(unsigned int device, unsigned short *chanBuf, float

*voltBuf)

This function programs a series of DAC channels to a corresponding series of voltages. An

array of channels to be measured is provided in the variable chanBuf. This array must be

terminated with a 0xFF value. A second array provides the voltage to be programmed on the

corresponding channel in the variable voltBuf. This array must be one less than the size of the

chanBuf array.

 unsigned int dev = 1;

 unsigned short chanBuf[] = { 0, 1, 2, 3, 4, 5, 6, 7, 0xff };

 float voltBuf[] = { -8.8, -5.5, -3.3, -1.8, 1.1, 2.2, 4.4, 9.9 };

 dllReturn = DacBufferedVoltage(dev, chanBuf, voltBuf);

 if (dllReturn)

 {

 printf("Error programming DAC channels\n");

 exit(dllReturn);

 }

4.6.5 int DacEnableInterrupt(unsigned int device, unsigned int channel)

This function is used to enable interrupts for a specific DAC device. A DAC generates an

interrupt when a channel program cycle is complete. This eliminates the need for the code to

poll the ready bit to indicate when the program process is complete.

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 17

Rev 4.0

If interrupts are enabled for a specific channel, then interrupts are enabled for all channels on

that device. DAC device 1 supports channels 0 to 3 and DAC device 2 supports channels 4 to

7.

 // selecting channel 7 will enable interrupts for channels 4-7

 unsigned int dev = 1;

 unsigned int ch = 7;

 dllReturn = DacEnableInterrupt(dev, ch);

 if (dllReturn)

 {

 printf("Error enabling interrupts for DAC2\n");

 exit(dllReturn);

 }

 else

 printf("Interrupts enabled for DAC2\n");

4.6.6 int DacDisableInterrupt(unsigned int device, unsigned int channel)

This function is used to disable interrupts for a specific DAC device. If interrupts are

disabled for a specific channel, then interrupts are disabled for all channels on that device.

DAC device 1 supports channels 0 to 3 and DAC device 2 supports channels 4 to 7.

 // selecting channel 1 will diable interrupts for channels 0-3

 unsigned int dev = 1;

 unsigned int ch = 1;

 dllReturn = DacDisableInterrupt(dev, ch);

 if (dllReturn)

 {

 printf("Error disabling interrupts for DAC1\n");

 exit(dllReturn);

 }

 else

 printf("Interrupts disabled for DAC1\n");

4.6.7 int DacWaitForUpdate(unsigned int device, unsigned int channel, unsigned

short code, unsigned long timeout)

This function forces a process to wait for a programming cycle to complete on a specific

DAC channel that has been enabled for interrupts. The function will wait until an interrupt

does occur indicating that a voltage has been set on that channel. This function will not stop

the execution of driver functions in another thread.

The timeout parameter provides a safeguard against system lockup. The value entered

provides a time out in milliseconds. If no interrupt occurs before the time-out expires, the

pending operation is canceled. To disable the timeout feature, use INFINITE as the timeout

parameter.

 // wait for interrupt on channel 7

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 18

Rev 4.0

 unsigned int dev = 1;

 unsigned int ch = 7;

 unsigned short chValue = 0xAB00;

 unsigned long *timeout = 0x1000; // 4096 msec

 // put process to sleep until program cycle completes

 dllReturn = DacWaitForConversion(dev, ch, chValue, timeout);

 if (dllReturn) {

 printf("Error waiting for program of channel %d\n", ch);

 exit(dllReturn);

 }

 else

 printf("DAC Channel %d value set to %04x\n", ch, chValue);

4.6.8 int DacWriteCommand(unsigned int device, unsigned int channel, unsigned

int dacCommand)

This function allows the user to program the DAC Command Register. Each DAC contains a

command register used to configure the span and load the data. The command word consists

of a 4-bit command and a 4-bit address, as shown. The variable dacCommand contains the

value to be written. More information for each bit field can be found in the LTC2704 Data

Sheet. An enumerated value called DacControl provides all valid command values.

 // write command to channel 3

 unsigned int dev = 1;

 unsigned int ch = 3;

 dllReturn = DacWriteCommand(dev, ch, DAC_CMD_WR_UPDATE_SPAN);

 if (dllReturn) {

 printf("Error writing command to channel %d\n", ch);

 exit(dllReturn);

 }

4.6.9 int DacWriteData(unsigned int device, unsigned int channel, unsigned int

dacData)

This function allows the user to program the 16-bit DAC Data Register. The data register sets

the value of the DAC voltage based on the span of the same channel. The variable dacData

contains the value to be written.

 // write data to channel 5

 unsigned int dev = 1;

 unsigned int ch = 5;

 unsigned short chValue = 0x7788;

 dllReturn = DacWriteData(dev, ch, chValue);

 if (dllReturn) {

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 19

Rev 4.0

 printf("Error writing data to channel %d\n", ch);

 exit(dllReturn);

 }

4.6.10 int DacReadData(unsigned int device, unsigned int channel, unsigned int

*dacData)

This function allows the user to read the DAC Data Registers. The 16-bit value is returned in

the variable dacData. The Readback Enable bit is set before the read. This should only be

used if the DacWaitForReady function completes successfully.

 unsigned int dev = 1;

 unsigned int ch = 2;

 unsigned short dacValue;

 dllReturn = DacReadData(dev, ch, & dacValue);

 if (dllReturn)

 {

 printf("Error reading data from channel %d\n", ch);

 exit(dllReturn);

 }

 else

 printf("DAC channel %d value is %04x ... ", ch, dacValue);

4.6.11 int DacWaitForReady(unsigned int device, unsigned int channel)

This function allows the user to read the DAC Status Register and determine if the Data

Ready bit has been set. If the function returns a zero, then the ready bit has been set and the

data register contains valid data. If the function returns a value of TIMEOUT_ERROR (5),

the ready bit was never set.

 // wait for ready on channel 4

 unsigned int dev = 1;

 unsigned int ch = 4;

 dllReturn = DacWaitForReady(dev, ch);

 if (!dllReturn)

 printf("Ready returned for channel %d\n", ch);

 else if (dllReturn == TIMEOUT_ERROR)

 printf("Ready not returned for channel %d\n", ch);

 else {

 printf("Error waiting for ready on channel %d\n", ch);

 exit(dllReturn);

 }

4.7 Generic Functions

4.7.1 int CloseSession(unsigned int device)

This function is used to disable the pcmmio device and close the driver when complete. If a

zero is returned, the driver is closed. Otherwise there was an error and the driver is still open.

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 20

Rev 4.0

 unsigned int dev = 1;

 if (CloseSession(dev))

 printf(“Error closing driver\n”);

4.8 Every function returns a zero or a positive integer value indicating success or failure. If a

zero is returned, the function has completed successfully. If a failure occurs, the specific value

returned provides more clarity as to the failure mechanism.

4.8.1 DRIVER_ERROR (1)

This error indicates that some function within the driver has failed. This error indicates that

one of the IOCTL calls within the driver itself has not completed successfully. Using

Windows Device Manager, verify that the driver is loaded and has no resource conflicts.

4.8.2 ACCESS_ERROR (2)

This error indicates the following conditions are present:

• The driver has tried to write to a DIO bit defined as an input

• The driver attempts to enable interrupts for a DIO bit defined as an output

• The driver attempts to write to a locked DIO port

• The driver attempts to change a bit in a locked DIO port

• The driver is unable to start a DioWaitForInterrupt, AdcWaitForConversion, or

DacWaitForUpdate call

4.8.3 INVALID_HANDLE (3)

This error indicates that the driver has not initialized or closed. The driver attempts to obtain

a handle to the PCM-MIO device, and this error indicates that the handle was not obtained.

Verify that the driver has loaded successfully.

4.8.4 INVALID_PARAMETER (4)

This error indicates that one of the parameters in a DLL function is out of bounds.

4.8.5 TIMEOUT_ERROR (5)

This error indicates the following conditions are present:

• Either the DioWaitForInterrupt, AdcWaitForConversion, or DacWaitForUpdate

function has exceeded the provided timeout value before an interrupt occurred

• An ADC conversion failed due to the ready bit never being set

• A DAC program cycle failed due to the ready bit never being set

• The function AdcWaitForReady or DacWaitForReady never had the ready bit set

5 Sample Applications

The driver package provides sample Windows console applications for most of the functions

provided in the driver package. The source code and an executable file is provided for each

application.

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 21

Rev 4.0

5.1 DIO Applications

5.1.1 flash

The flash sample application sets and clears each bit in sequential order. All bits are

configured as outputs, and then each bit is toggled with a 200 msec delay. If any error occurs

during execution, the error is reported and the application is terminated.

5.1.2 poll

The poll sample application tests DIO interrupts. The device is opened and all bits of the first

three ports are configured as inputs. Interrupts are enabled for each input bit alternating

between rising and falling edge. A separate thread is created that calls the

DioWaitForInterrupt function. If any of the input bits are toggled with the proper edge

polarity, the specific interrupt is displayed on the console. Any keystroke will terminate the

program and report the total number of interrupts.

5.2 ADC Applications

5.2.1 getvolt

The getvolt sample application configures the selected channel for ±10V bi-polar and reads

and displays the voltage on that channel using the AdcGetChannelVoltage function. The

channel number is provided as a command line argument. If any error occurs during

execution, the error is reported and the application is terminated.

5.2.2 getvolt_irq

The getvolt_irq sample application uses interrupts to read the voltage on each channel

sequentially. All channels are configured for ±10V bi-polar and both ADC devices are

enabled for interrupts. Two separate threads are created for each ADC device that calls the

AdcWaitForConversion function for each channel sequentially every 50 msec. If successful,

the voltage read is displayed. Any keystroke will terminate the program and report the total

number of interrupts.

5.2.3 getall

The getall sample application configures all channels for ±10V bi-polar and uses the

AdcGetAllChannelVoltages function to read and display the voltage on all channels. If any

error occurs during execution, the error is reported and the application is terminated.

5.2.4 adcBuff

The adcBuff sample application configures all channels for ±10V bi-polar and uses the

AdcBufferedChannelConversions function to read and display the voltage for the channel

sequence provide by the channel array variable. The AdcConvertToVolts function is also

demonstrated. If any error occurs during execution, the error is reported and the application is

terminated.

5.2.5 adcRepeat

The adcRepeat sample application configures the selected channel ±10V bi-polar and uses

the AdcConvertSingleChannelRepeated function to read and display the voltage on that

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 22

Rev 4.0

channel for the number of times specified in the function arguments. The channel number is

provided as a command line argument. The AdcConvertToVolts function is also

demonstrated. If any error occurs during execution, the error is reported and the application is

terminated.

5.3 DAC Applications

5.3.1 setvolt

The setvolt sample application programs the selected channel from -10V to 10V in one volt

steps every 2 seconds using the DacSetChannelVoltage function. The channel number is

provided as a command line argument. If any error occurs during execution, the error is

reported and the application is terminated.

5.3.2 setvolt_irq

The setvolt_irq sample application uses interrupts to continuously program a value on a

single channel for each device. All channels are configured for a span of ±10V bi-polar and

both DAC devices are enabled for interrupts. Two separate threads are created for each DAC

device that calls the DacWaitForUpdate function for the specified channel every 50 msec.

The value is incremented by a set value after each programming step. If successful, the

programmed value is displayed. Any keystroke will terminate the program and report the

total number of interrupts.

5.3.3 dacBuff

The dacBuff sample application uses the DacBufferedVoltage function to program the

channel sequence with the voltage sequence provided by the array variables. The function

will optimize the span for each channel based on the desired voltage. If any error occurs

during execution, the error is reported and the application is terminated.

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 23

Rev 4.0

Appendix A: pcmmioDLL.h

//**
//

// Copyright 2018 by WinSystems Inc.

//
//**

//

// Name : pcmmioDLL.h

//
// Project : PCM-MIO Windows DLL

//

// Author : Paul DeMetrotion
//

//**

//

// Date Rev Description
// -------- ------- ---

// 03/09/18 1.0 Original Release of DLL

//
//**

#ifndef _PCMMIO_DLL_H_
 #define _PCMMIO_DLL_H_

#if defined DLL_EXPORT

 #define DECLDIR __declspec(dllexport)
#else

 #define DECLDIR __declspec(dllimport)

#endif // DLL_EXPORT

extern "C"

{
 DECLDIR int InitializeSession(unsigned int device);

 DECLDIR int CloseSession(unsigned int device);

 // DIO functions
 DECLDIR int DioResetDevice(unsigned int device);

 DECLDIR int DioSetIoMask(unsigned int device, unsigned int *portState);

 DECLDIR int DioGetIoMask(unsigned int device, unsigned int *portState);
 DECLDIR int DioReadAllPorts(unsigned int device, unsigned int *readValueArray);

 DECLDIR int DioReadPort(unsigned int device, int port, unsigned int *readValue);

 DECLDIR int DioReadBit(unsigned int device, int bit, unsigned int *bitValue);

 DECLDIR int DioSetBit(unsigned int device, int bit);
 DECLDIR int DioClearBit(unsigned int device, int bit);

 DECLDIR int DioWritePort(unsigned int device, int port, unsigned int writeValue);

 DECLDIR int DioWriteBit(unsigned int device, int bit, unsigned int bitValue);
 DECLDIR int DioEnableInterrupt(unsigned int device, int bit, int edge);

 DECLDIR int DioDisableInterrupt(unsigned int device, int bit);

 DECLDIR int DioGetInterrupt(unsigned int device, unsigned int *irqArray);
 DECLDIR int DioWaitForInterrupt(unsigned int device, unsigned int *irqArray, unsigned

long timeout);

 DECLDIR int DioLockPort(unsigned int device, int port);

 DECLDIR int DioUnlockPort(unsigned int device, int port);

 // ADC functions

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 24

Rev 4.0

 DECLDIR int AdcSetChannelMode(unsigned int device, unsigned int channel, int mode,
int duplex, int range);

 DECLDIR int AdcGetChannelValue(unsigned int device, unsigned int channel, unsigned

short *value);

 DECLDIR int AdcGetChannelVoltage(unsigned int device, unsigned int channel, float
*voltage);

 DECLDIR int AdcGetAllChannelValues(unsigned int device, unsigned short *valBuf);

 DECLDIR int AdcGetAllChannelVoltages(unsigned int device, float *voltBuf);
 DECLDIR int AdcAutoGetChannelVoltage(unsigned int device, unsigned int channel, float

*voltage);

 DECLDIR int AdcConvertSingleChannelRepeated(unsigned int device, unsigned int
channel, int count, unsigned short *valBuf);

 DECLDIR int AdcBufferedChannelConversions(unsigned int device, unsigned int *chanBuf,

unsigned short *outBuf);

 DECLDIR int AdcConvertToVolts(unsigned int device, unsigned int channel, int value,
float *voltage);

 DECLDIR int AdcEnableInterrupt(unsigned int device, unsigned int channel);

 DECLDIR int AdcDisableInterrupt(unsigned int device, unsigned int channel);
 DECLDIR int AdcWaitForConversion(unsigned int device, unsigned int channel, unsigned

short *value, unsigned long timeout);

 DECLDIR int AdcWriteCommand(unsigned int device, unsigned int channel, unsigned int
adcCommand);

 DECLDIR int AdcWaitForReady(unsigned int device, unsigned int channel);

 DECLDIR int AdcReadData(unsigned int device, unsigned int channel, unsigned short

*adcData);
 DECLDIR int AdcStartConversion(unsigned int device, unsigned int channel);

 // DAC functions
 DECLDIR int DacSetChannelVoltage(unsigned int device, unsigned int channel, float

voltage);

 DECLDIR int DacSetChannelOutput(unsigned int device, unsigned int channel, unsigned

short code);
 DECLDIR int DacSetChannelSpan(unsigned int device, unsigned int channel, unsigned

short span);

 DECLDIR int DacBufferedVoltage(unsigned int device, unsigned short *chanBuf, float
*voltBuf);

 DECLDIR int DacEnableInterrupt(unsigned int device, unsigned int channel);

 DECLDIR int DacDisableInterrupt(unsigned int device, unsigned int channel);
 DECLDIR int DacWaitForUpdate(unsigned int device, unsigned int channel, unsigned

short code, unsigned long timeout);

 DECLDIR int DacWriteCommand(unsigned int device, unsigned int channel, unsigned int

dacCommand);
 DECLDIR int DacWriteData(unsigned int device, unsigned int channel, unsigned int

dacData);

 DECLDIR int DacReadData(unsigned int device, unsigned int channel, unsigned int
*dacData);

 DECLDIR int DacWaitForReady(unsigned int device, unsigned int channel);

}

typedef enum {

 SUCCESS = 0,

 DRIVER_ERROR,
 ACCESS_ERROR,

 INVALID_HANDLE,

 INVALID_PARAMETER,
 TIMEOUT_ERROR

} ErrorCodes;

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 25

Rev 4.0

typedef enum {
 FALLING_EDGE = 0,

 RISING_EDGE

} IrqEdge;

typedef enum {

 ADC_DIFFERENTIAL = 0,

 ADC_SINGLE_ENDED
} AdcMode;

typedef enum {
 ADC_CH0_SELECT = 0,

 ADC_CH2_SELECT,

 ADC_CH4_SELECT,

 ADC_CH6_SELECT,
 ADC_CH1_SELECT,

 ADC_CH3_SELECT,

 ADC_CH5_SELECT,
 ADC_CH7_SELECT

} AdcChSelect;

typedef enum {

 ADC_BIPOLAR = 0,

 ADC_UNIPOLAR

} AdcDuplex;

typedef enum {

 ADC_TOP_5V = 0,
 ADC_TOP_10V

} AdcRange;

typedef enum {
 DAC_A = 0,

 DAC_B = 2,

 DAC_C = 4,
 DAC_D = 6,

 DAC_ALL = 15,

} DacAddress;

typedef enum {

 DAC_SPAN_UNI5 = 0,

 DAC_SPAN_UNI10,
 DAC_SPAN_BI5,

 DAC_SPAN_BI10,

 DAC_SPAN_BI2,
 DAC_SPAN_BI7

} DacSpan;

typedef enum {
 DAC_CMD_WR_B1_SPAN = 2,

 DAC_CMD_WR_B1_CODE,

 DAC_CMD_UPDATE,
 DAC_CMD_UPDATE_ALL,

 DAC_CMD_WR_UPDATE_SPAN,

 DAC_CMD_WR_UPDATE_CODE,
 DAC_CMD_WR_SPAN_UPDATE_ALL,

 DAC_CMD_WR_CODE_UPDATE_ALL,

 DAC_CMD_RD_B1_SPAN,

 PCM-MIO-G-1 Windows Device Driver Package

04/27/2018 26

Rev 4.0

 DAC_CMD_RD_B1_CODE,
 DAC_CMD_RD_B2_SPAN,

 DAC_CMD_RD_B2_CODE,

 DAC_CMD_SLEEP,

 DAC_CMD_NOP
} DacControl;

#endif // _PCMMIO_DLL_H_

