
 10/03/2018 1
Rev 5.1

UIO48 Linux

Device Driver Package

1 Introduction

1.0 The UIO48 Device Driver Package consists of a Linux Device Driver, an application
programming interface library, and example application programs.

1.1 The driver was built and tested on a Linux based Ubuntu 12.04 and 16.04. LTS
distributions. These releases correspond to Linux kernel versions 3.2 and 4.4.

1.2 The driver is for use with WinSystems, Inc. Digital I/O boards and Single Board
Computers (SBC) that utilize our exclusive digital I/O ASIC, dubbed the WS16C48. The
WS16C48 ASIC supports up to 48 digital I/O lines addressed through six contiguous registers.
Each I/O line is individually programmable for input, output, or output with read back operation.
The ASIC supports up to 24 event sense lines which can sense a positive or negative transition
on the input. These can be used to generate a system interrupt request.

The following WinSystems, Inc. Products incorporate at least one (1) WS16C48 UIO functional
block.

Product I/O Lines Interrupt Lines
PCM-UIO48A 48 24
PCM-UIO96B 96 48
EPX-C380 48 24
EBC-C384 48 24
PXM-C388 24 24
PPM-C407 24 24
PPM-C412 24 24
EBC-C413 48 24
EPX-C414 48 24
PCM-C418 24 24
PPM-LX800-G 16 16

1.3 This driver is provided on an 'as-is' basis and no warranty as to usability or fitness of
purpose is inferred or claimed.

1.4 WinSystems, Inc. does not provide support for the modification of this driver. Customer
application specific queries can be sent to: support@winsystems.com.

1.5 This work is provided under the terms of the GNU General Public License (GPL).

 UIO48 Linux Device Driver Package

 10/03/2018 2
Rev 5.1

2 Installations and Build

2.0 The device driver and the sample applications are provided in source code form as a
compressed zipped folder.

2.1 It will be necessary to become the root user to build and install the driver and device nodes.

2.2 The MAJOR number for this device is allocated dynamically. A static number can be
assigned by editing the uio48_init_major variable at the beginning of uio48.c.

2.3 To create the device driver Loadable Kernel Module and the sample applications in a
command shell, execute: make all. The device driver Loadable Kernel Module uio48.ko is
created and moved to the appropriate kernel driver directory. The file access permissions are set
to allow access by all users and groups; they may be changed manually as desired. The two
sample programs flash and poll are also built.

make install will install the kernel driver to a kernel directory and create dependencies.
make uninstall will remove the kernel driver from the kernel directory.
make flash will create the flash sample program.
make poll will create the poll sample program.
make clean will remove objects created by the build.
make spotless will forcibly remove all artifacts of the build.

2.4 The device driver can be loaded with the provided initialization script uio48_load or
manually. In either case modprobe is used to install the driver. The I/O base address and IRQ
assignments should be specified as arguments to modprobe and should match the jumper settings
on I/O cards or the SBC BIOS settings. Executing:

modprobe uio48.ko io=0x200 irq=10

This will install the driver, which supports up to four devices. Multiple devices can be loaded by
executing the same command with multiple parameter settings.

modprobe uio48.ko io=0x200,0x220 irq=10, 11

Interrupts can usually not be shared across boards, although the driver will attempt it anyway.

The uio48_load script can be added to the /etc/rc.local file to load the driver automatically
on boot.

 UIO48 Linux Device Driver Package

 10/03/2018 3
Rev 5.1

3 Driver Usage

3.0 The WS16C48 ASIC is accessed utilizing byte-wide I/O access instructions. The device
driver model that is most similar is the “Character” model. Block oriented, File I/O, and random-
access operations on these devices (read, write, and seek) are very inefficient, and may not
always give the desired results. The driver was designed to use ioctl as its principal programming
interface.

3.1 The file uio48io.c implements the ioctl interface and presents to the application a set of
standard C functions that may be called directly from the application without any further need
for dealing with, or understanding how to access the driver through ioctl. An application must
include uio48.h and link to uio48io.o.

3.2 Applications using the driver may enable interrupts on any or all of the first 24 bits of each
device. The application may further specify the polarity of the event, which will trigger the
interrupt. Within the driver itself, interrupt events are buffered and handed to waiting processes.
Further details on interrupt handling can be seen in the later sections which detail the functions
implemented through ioctl or by examining the sample programs.

3.3 Application Programming Interface
An object file containing the Application Programming Interface utilized by user level programs
to access the Kernel Loadable Module device driver driven devices is created as part of the build
procedure. Valid arguments used in each function will vary based on the device in use.
Reference the table on page 1 for the configuration of each product.

3.3.1 int read_bit(int chip_number, int bit_number)
This function takes as an argument the chip_number (1-4) and the bit_number (1-48) and returns
0 if the input is open or high, 1 if the input is low, and -1 if the chip is inaccessible or invalid.

3.3.2 int write_bit(int chip_number, int bit_number, int value)
This function takes arguments similar to read_bit and adds the value argument which is either 1
or 0. Writing a 1 to a bit sets the output pin to a low state. Writing 0 releases the pin so that that it
is pulled high. Return value is 0 on success or -1 if the chip is inaccessible or invalid.

3.3.3 int set_bit(int chip_number, int bit_number)
This function takes arguments of chip_number (1-4) and bit_number (1-48). The value returned
is 0 if successful or -1 if the chip_number is invalid or the chip is not accessible. On success, the
output pin associated with the bit is driven low.

3.3.4 int clr_bit(int chip_number, int bit_number)
This function takes the arguments chip_number (1-4) and bit_number (1-48). It returns 0 on
success and -1 if the chip_number is invalid or the specified chip is not accessible. On success,
the output pin associated with the bit is released to a high state.

 UIO48 Linux Device Driver Package

 10/03/2018 4
Rev 5.1

3.3.5 int enab_int(int chip_number, int bit_number, int polarity)
This function takes three arguments. The chip_number (1-4), the bit_number (1-24) and the
polarity (1= rising edge, 0 = falling edge). The chip is then armed and transitions on the specified
bit will cause an interrupt to occur. The driver will buffer up these interrupts and hand them out
to calling programs using either get_int() or wait_int(). Note that the input pins on the WS16C48
are NOT debounced and depending on what type of stimulus is presented to the input pin, the
possibility exists for multiple transitions and interrupts to occur. It is the responsibility of the
application program to filter or debounce these types of multiple interrupts.

3.3.6 int disab_int(int chip_number, int bit_number)
This function disables polarity-sensing interrupts on the specified chip_number (1-4) at the
specified bit_number (1-24). A return value of 0 signals success, a return value of -1, indicates
an invalid chip_number or an inaccessible chip.

3.3.7 int clr_int(int chip_number, int bit_number)
This function takes as arguments the chip_number (1-4) and the bit_number (1-24) and returns 0
on success or -1 on error. This function is ordinarily not used as the ISR in the driver will clear
an interrupt as it responds to it. This function is mostly used in the case where the driver was
installed using insmod with no IRQ specification but an application has enabled event sensing
anyway. Then an application can make repeated calls to get_int() awaiting an event. When one
does occur, this function, clr_int() must be called to re-enable the sense interrupt for that
particular bit.

3.3.8 int get_int(int chip_number)
This function takes a single argument of the chip_number (1-4) and returns either 0, if no event
was sensed on that chip, -1 if the chip_number was invalid or inaccessible, or a number between
1 and 24 which indicates that an event has occurred on that bit number. This function does NOT
wait for an event. It returns immediately with either an error (-1), the top value in the interrupt
buffer, or the result of polling the chip's registers for an event sense.

3.3.9 int wait_int(int_chip_number)
This function is nearly identical to get_int() with one major exception. If there is no error, and if
there is nothing in the event buffer, and if there is nothing in the event sense registers of the
specified chip, then the current process will sleep until some event is sensed on the specified
chip. Certain signals can also awaken the process and cause it to return without an actual event
having occurred. This is by design, and allows a process to be terminated even though it is
asleep. As with get_int() there are three possible types of return values. 0 signals that no interrupt
occurred, -1 indicates an error, and a value between 1 and 24 signifies the bit on which an event
sense occurred.

3.3.10 int read_int_pending(int chip_number)
This function takes a single argument of the chip_number (1-4) and returns either the 8-bit
contents of the INT_PENDING Register of the WSUIO48 device or -1 if the chip_number was
invalid or inaccessible.

 UIO48 Linux Device Driver Package

 10/03/2018 5
Rev 5.1

3.3.11 int clr_int_id(int chip_number, int port_number)
This function takes as arguments the chip_number (1-4) and the port_number (0-2)
corresponding to the interrupt ID byte to be cleared. Return value is 0 on success or -1 if the chip
is inaccessible or invalid. This function writes a zero to the specified INT_ID register. This has
the effect of clearing all pending interrupts for the specified port.

3.3.12 int read_byte(int chip_number, int port_number)
This function takes as arguments the chip_number (1-4) and the port_number (0-5) and returns
either the 8-bit contents of the register offset specified by port_number on the WSUIO48 device
or -1 if the chip_number was invalid or inaccessible.

3.3.13 int write_byte(int chip_number, int port_number, int val)
This function takes as arguments the chip_number (1-4), the port_number (0-5), and the value to
be written to the register offset specified by port_number on the WSUIO48 device. Return value
is 0 on success or -1 if the chip is inaccessible or invalid.

3.3.14 int lock_port(int chip_number, int port_number)
This function takes as arguments the chip_number (1-4) and the port_number (0-5) to be locked
on the WSUIO48 device. This prevents further writes to the specified port. Return value is 0 on
success or -1 if the chip is inaccessible or invalid.

3.3.15 int unlock_port(int chip_number, int port_number)
This function takes as arguments the chip_number (1-4) and the port_number (0-5) to be
unlocked on the WSUIO48 device. Unlocking permits write access to the specified port. Return
value is 0 on success or -1 if the chip is inaccessible or invalid.

 UIO48 Linux Device Driver Package

 10/03/2018 6
Rev 5.1

4 Sample Programs

4.1 Flash

The “Flash” sample application is a simple program that illustrates how to set and clear output
points. All I/O points are programmed to be outputs and cleared. Then starting with the least
significant bit, each bit is set and after a fixed interval, cleared. The sequence is then repeated
indefinitely. The Flash executable is built as part of the driver build, but may be built separately
by: make flash.

4.2 Poll

The “Poll” sample application is quite a step-up from “Flash” in complexity. It uses the POSIX
threads capability of Linux to create two sub-processes that are used to monitor two chips for
interrupts generated by high to low transitions on any of the first 24 bits of the two chips.
Whenever either of the two monitor processes detects an interrupt, a message is displayed, and
an event counter is updated. The foreground code simulates a command-based user interface.
Refer to the source code for poll.c for a further discussion of the methodology used in this
program. This program demonstrates a simple way to coordinate, in the context of a single
application program, with external asynchronous stimulus events. The Poll executable may be
built separately by: make poll.

