
WinSystems
EPX-GX A/D Converter Library Routines

Support under DOS for the LTC185X analog to digital converter present on the EPX-GX
board is through a library of 'C' language function calls. An application program can
either link to the library , or specific functions can be pulled into the application from the
supplied library source file. The library file is named gxa2d.c. All library and sample
programs were compiled and tested using the Borland C/C++ compiler version 3.1. It
should take little or no effort to port these routines to other compilers if required.

The LTC185X series converter is very fast with an intrinsic conversion time of about 4uS.
When coupled with the state machine hardware, and realistic software, a conversion can
be accomplished in under 25uS. Although interrupts are supported to signal an end of
conversion, testing has shown that polled mode is actually faster as interrupt handling add
a significant overhead to the operations. The supplied library routines function in either
polled or interrupt mode as desired.

Also included with the library are 4 sample application programs which utilize the
functions in the library. They range in complexity from very simple to much more
complex.. There is extensive commenting within both the library source file and the
sample applications to facilitate understanding of their usage.

This document will discuss briefly each sample application and then document all of the
library functions and exported global variables that may be used by an application.

GETVOLT.EXE

Getvolt.c is the source for sample application number 1. This sample is shown first
because it utilizes the highest level function in the library and for a large number of users
will be the only function required from the library.

This application is supplied in a pre-compiled form getvolt.exe and in its source form
getvolt.c. It is invoked at the DOS command line as :

 getvolt x

Where x is a value from 0 to 7 indicating the channel number to convert. The voltage on
that channel is then displayed. Internally the code calls the high-level function.

 gxad_auto_get_channel_voltage(channel);

This function is an auto ranging function in that it starts out by making a measurement in
a ±10V scale, checking the result to see if a more precise value could be obtained by
changing scales and if so, making another measurement at the more precise range and

returning a floating point voltage to the caller. If absolute speed is not important this is
the easiest way to make a reading on a channel.

NOTE : This function was coded for single-ended usage only. Differential inputs would
need to set a mode and scale and use the non auto ranging function
gxad_get_channel_voltage.

GETALL.EXE

The second application uses the gxad_convert_all_channels function call to get a
snapshot of all of the 8 channels with one call. Unlike gxad_auto_get_channel_voltage
and gxad_get_channel_voltage, the data is returned not in floating point but in an array of
raw 16-bit values ranging from 0000H to FFFFH. The program extracts the values one by
one from the array, converts them to floating point using global conversion value arrays
and then displays the results. Also note that since this is not an auto ranging function it is
necessary to call gxad_set_conversion_mode for each channel to tell the software the
input mode, and range desired. In this sample all channels were set to the same mode but
there is no requirement that they all be the same.

REPEAT.EXE

The third application demonstrates the usage of the gxad_convert_single_repeated
function call. This call is prototyped as:

int gxad_convert_single_repeated(int channel, unsigned count, unsigned *buffer);

The channel number argument is fairly obvious. The count value is the number of
conversions we want to take on this channel and buffer is a pointer to an array large
enough to hold the number of samples requested. Upon return the buffer array will hold
count number of conversions which are once again provided in 16-bit values. This sample
requests 2000 samples at a time. Once the data is back, it is element by element converted
to floating point, displayed and compared against previous minimum and maximum
values. Pressing the 'C' key clears the counts and min/max values and pressing 'N' steps to
the next channel. Any other key exits.

BUFFERED.EXE

The fourth and final sample uses the gxad_buffered_channel_conversions call to program
a series of high-speed conversions with the results being stored in a specified buffer. The
function prototype is :

gxad_buffered_channel_Conversions(unsigned char *input_channel_buffer, unsigned *buffer);

The input_channel_buffer is an array of channel numbers built by the user as a to-do list
of conversions. It is terminated with a 0FFH value. The buffer array must be large enough
to hold the requested number of conversions. In our sample we load the

input_channel_buffer with zero 500 times, one 500 times, two 500 times, and three 500
times for a total of 2000 conversions. Actually our input_channel_buffer is 2001
characters long to make space for the terminating 0ffh character. The output buffer is
2000 unsigned integers long which will hold the results. Upon return from this function
we have 500 conversions each on the first 4 channels. The program sorts them out,
converts them to voltages and displays the values. Any key press exits the program.

FUNCTION LIST

gxad_auto_get_channel_voltage - Get Channel voltage auto ranging

Prototype : float gxad_auto_get_channel_voltage(int channel)

Arguments : channel - The channel to be converted

Return : Floating point value = to voltage at input channel pin

Description : This function returns the voltage on the current input channel pin.
 It works for single-ended inputs only. It could make as many as
 Four conversion requests before returning a final value. This
 Function is the simplest interface to the hardware.

gxad_get_channel_voltage - Get Channel Voltage

Prototype : float gxad_get_channel_voltage(int channel)

Arguments : channel - The channel to be converted

Return : A Floating point value = to voltage at channel input pin.

Description : This function like gxad_auto_get_channel_voltage returns the
 voltage on the specified channel's input pin. The value returned is
 only valid for the range specified with a preceding
 gxad_set_channel_mode.

gxad_set_channel_mode - Set Channel input mode and range

Prototype : gxad_set_channel_mode(int channel, int input_mode, int duplex,
 int range)

Arguments : channel - The channel number to set (0-7)

 : input_mode - Input type
 GXAD_SINGLE_ENDED
 GXAD_DIFFERENTIAL

 : duplex - The swing of the input voltage
 GXAD_UNIPOLAR
 GXAD_BIPOLAR

 : range - The input voltage top end
 GXAD_TOP_5V
 GXAD_TOP_10V

Return : 1 = An argument error occurred.
 0 = Function completed successfully.

Description : This function is used to set the input mode for a given channel.
 Once a channel's mode has been set it will remain until changed or
 until the application exits. The mode must be set before making any
 conversion calls except for gxad_auto_get_channel_voltage which
 will change the mode to the one most appropriate for the current
 input.

gxad_start_conversion - Start a conversion on a channel

Prototype : int gxad_start_conversion(int channel)

Arguments : channel - The channel number (0-7)

Return : 1 = Bad channel number
 0 = Conversion started

Description : This function starts an A/D conversion on the specified channel
 number and returns immediately.

gxad_wait_ready - Wait for conversion complete

Prototype : int gxad_wait_ready(void)

Arguments : none

Return : 1 = Timeout error occurred
 0 = Data ready to be read

Description : This function is used to wait for conversions to complete. If
 interrupt mode is on, it waits for the ISR to set a flag. If polled
 mode is being used this routine reads the status port until the
 conversion is complete.

gxad_read_conversion_data - Read data from A/D converter

Prototype : unsigned gxad_read_conversion_data(void)

Arguments : none

Return : 16-bit value (signed/unsigned dependent on channel mode)

Description : The function reads out the data from the second to last conversion.
 It is important to recognize that with each conversion the converter
 delivers the data from the previous conversion meaning that if a
 current reading is required it's necessary to do two conversions.
 Look at the source code for the sample programs to see how this
 is accomplished.

gxad_convert_all_channels - Convert all channels

Prototype : int gxad_convert_all_channels(unsigned *buffer)

Arguments : Pointer to an 8 element unsigned array for return of values.

Return : 0 = conversions complete

Description : This function is used to snapshot all 8 channels as quickly as
 possible. The results are stored in an 8-element array provided by
 the calling program. The values provided are 16-bits
 (signed/unsigned) in length for each element.

gxad_convert_single_repeated - Multiple conversions on a single channel

Prototype : int gxad_convert_single_repeated(int channel, unsigned count,
 unsigned *buffer)

Arguments : channel - The channel number (0-7)

 : count - The number of desired conversions.

 : buffer - A pointer to an array of count elements to hold the results

Return : 0 = conversions complete

Description : The function allows for repetitive high-speed conversions on a
 single channel. The array pointer buffer must be of sufficient size
 to hold the results, i.e. count elements long. The absolute
 maximum count is 65536 but that is, in reality, unobtainable in a
 real mode small model program. Counts from 2 to 16384 are
 more realistic. The values are returned in the array in 16-bit
 integers which are signed or unsigned dependent upon the
 channel mode used.

gxad_buffered_channel_conversions - Programmable conversion sequence

Prototype : int gxad_buffered_channel_conversions(unsigned char
 input_channel_buffer, unsigned *buffer)

Arguments : input_channel_buffer - Pointer to an array of channel numbers to
 Be converted. Terminated with 0ffH.

 : buffer - Pointer to an array to receive the results.

Return : 0 = conversions complete.

Description : This function allows for high speed multiple channel conversions.
 The input is an array of channel numbers in any order repetitive or
 not as desired. The function will start each conversion immediately
 after completing the previous one without further application
 intervention. The list is terminated with a 0ffH value.
 The buffer argument should point to an adequately sized array to
 hold all of the specified conversion results.

gxad_set_interrupt_mode - Turn on interrupt mode

Prototype : int gxad_set_interrupt_mode(int my_irq)

Arguments : my_irq - The IRQ number (0-15) to use (Must match hardware)

Return : 1 - Bad IRQ number
 0 - Interrupt enabled

Description : This function enables the end of conversion interrupt on the
 LTC185X and installs an ISR routine for handling the interrupts.
 Note that in most cases the extreme speed of the converter will
 negate any gains by using interrupts. During testing under DOS
 polled mode resulted in less CPU overhead and faster
 conversions.

gxad_set_polled_mode - Set polled mode for conversion complete status

Prototype : void gxad_set_polled_mode(void)

Arguments : none

Return : none

Description : This function reverses the action of the gxad_set_interrupt_mode
 call. It restores the interrupt vector, masks the interrupt at the PIC
 and turns off interrupts at the LTC185X. This function does
 nothing if called without a previous call to
 gxad_set_interrupt_mode.

