
04/18/2017 1

Rev 4.0

Watchdog Timer

Windows Device Driver Package

1 Introduction

1.1 Many of WinSystems full-featured, high-performance computers offer an integrated

watchdog timer, which can be used to guard against software lockups. The watchdog timer can

be configured directly from software. The provided driver allows user control of the watchdog

timer under the Windows 7, 8, and 10 operating systems.

1.2 The driver is for use with the WinSystems, Inc. COMeT6-1100 Computer on Module.

2 Installation

2.1 Before loading the Windows operating system, verify that the Watchdog Timer settings are

correct using the BIOS setup utility.

2.2 The driver, support files, and application are supplied in a zip file along with this document.

The following files are included:

a. wdt.sys – Windows device driver

b. wdt.inf – Windows installation file

c. wdt.cat – Windows catalog file

d. WdfCoinstaller01011.dll – Windows co-installer

e. wdtDLL.dll – Windows DLL

f. wdtDLL.lib – Windows library file

g. wdtDLL.h – driver include file

h. WDTPetApp.cpp –Windows application source

i. WDTPetApp.exe –Windows application

The Microsoft Visual C++ Redistributable (VC_redist.x64.exe) is required to run the application.

2.3 Installation is accomplished via the ‘Add legacy hardware’ selection found in the Action

menu of the Windows Device Manager. Navigate to the drive and folder containing the driver

files and select wdt.inf. The Windows installer will copy the wdt.sys and wdtDLL.dll files to the

appropriate directory in the Windows installation.

2.4 In Device Manager, the wdt Device will appear under the Wdt Class. The only allowed

hardware configuration for installation is I/O range 264-267H. The driver I/O range cannot be

changed. A reboot may be required after resource selection is complete.

 Watchdog Timer Windows Device Driver Package

06/23/2025 2

Rev 4.1

2.5 The watchdog timer is accessed through two I/O ports, at addresses 265H and 266H. Port

265H is used to program the counter for seconds or minutes. Port 266H is used to enable the

watchdog timer, program the desired time-out count value, and reset the counter.

2.6 The included example program, WdtPetApp.exe, can be used to verify driver installation and

functionality. Usage of this program is described later in this document.

3 Driver Overview and Architecture

3.1 The file wdt.sys is a Windows Driver Foundation kernel-mode (KMDF) driver which

facilitates access to the underlying hardware.

3.2 The file wdtDLL.dll is a Windows Dynamic-Link Library which provides more user-friendly

functions to access the device.

3.1 The driver utilizes the I/O Control (IOCTL) Request Framework to control the register set of

the watchdog timer. Data is passed to and from the driver utilizing input and output buffers.

4 Driver Usage

4.1 The wdtDLL.h file included in the driver distribution contains the supported functions to be

used by an application to communicate with the wdt Driver. This file is included in this

document in Appendix A: wdtDLL.h.

4.2 An application calls the function InitializeSession to open the driver. This is required before

any of the other functions can be called. The following example opens the WinSystems wdt

driver. If a zero is returned, then the driver has been successfully initialized. Any other returned

value indicates that an error has occurred and the device is unusable.

 if (InitializeSession())
 printf(“Error opening device.\n”);

4.3 Once the driver is initialized, the other functions can be used to control the watchdog timer.

Following is a description and sample code for each function. For all functions, if a zero is

returned, the function was successful. Otherwise, there was an error and the function did not

complete.

4.3.1 int ReadTimerValue(unsigned int *readValue)

Reads the current 8-bit value of the watchdog timer register.

 unsigned int read_data;

 if (ReadTimerValue(&read_data))
 printf(“Error reading timer.\n”);

 Watchdog Timer Windows Device Driver Package

06/23/2025 3

Rev 4.1

4.3.2 int WriteTimerValue(unsigned int writeValue)

Changes the current value of the watchdog timer with the parameter writeValue.

 unsigned int write_data = 0xA5;

 if (WriteTimerValue(write_data))
 printf(“Error writing timer.\n”);

4.3.3 int EnableTimer (unsigned int timeoutValue, int min_sec)

This function is used to start the watchdog timer. It loads the timer with the parameter

timeoutValue and configures the watchdog timer units for either minutes or seconds. An

enum value is provided in the wdtDLL.h file which defines valid values for min_sec

(SECONDS = 0 and MINUTES = 1).

 unsigned int timeoutValue = 0x80;

 if (EnableTimer(timeoutValue, SECONDS))
 printf(“Error starting timer.\n”);

4.3.4 int DisableTimer ()

This function is used to disable the watchdog timer. It loads the timer with a time-out value

of zero and configures the watchdog timer units for seconds.

 unsigned int timeoutValue = 0x80;

 if (EnableTimer(timeoutValue, SECONDS))
 printf(“Error starting timer.\n”);

4.3.5 int CloseSession()

This function is used to disable the watchdog timer and close the driver when complete. If a

zero is returned, the timer is disabled and the driver is closed. Otherwise there was an error

and the driver is still open.

 if (CloseSession())
 printf(“Error closing driver.\n”);

4.4 Every function returns an integer value indicating success or failure. If a zero is returned, the

function has completed successfully. If a failure occurs, the specific value returned provides

more clarity as to the failure mechanism.

4.4.1 DRIVER_ERROR (1)

This error indicates that some function within the driver has failed. This error indicates that

one of the IOCTL calls within the driver itself has not completed successfully. Using

Windows Device Manager, verify that the driver is loaded and has no resource conflicts.

4.4.2 INVALID_HANDLE (2)

This error indicates that the driver has not initialized or closed. The driver attempts to obtain

a handle to the WDT device, and this error indicates that the handle was not obtained. Verify

that the driver has loaded successfully.

 Watchdog Timer Windows Device Driver Package

06/23/2025 4

Rev 4.1

4.4.3 INVALID_PARAMETER (3)

This error indicates that one of the parameters in the function is out of bounds. Watchdog

timer values must be between 0 and 255. A NULL pointer check is used for pointer

parameters.

5 Sample Program

5.1 There is one sample program called WDTPetApp.exe. This application will enable the timer

with a 30 second shut down time and can be pet and reset to 30 seconds by pressing any key

except ‘q’. A separate thread will read the timer and display the remaining time until shutdown.

The application will close the WDT and exit when ‘q’ is pressed. The functionality of the timer

reset can be verified by letting the timer run out. The computer should reset. The source code for

this application is provided in Appendix B: WDTPetApp.cpp.

 Watchdog Timer Windows Device Driver Package

06/23/2025 5

Rev 4.1

Appendix A: wdtDLL.h

//**
//
// Copyright 2017 by WinSystems Inc.
//
//**
//
// Name : wdtDLL.h
//
// Project : WDT Windows DLL
//
//**
//
// Date Rev Description
// -------- ------- ---
// 04/14/17 1.0 Original Release of DLL
//
//**

#ifndef _WDT_DLL_H_
#define _WDT_DLL_H_
#include <iostream>

#if defined DLL_EXPORT
#define DECLDIR __declspec(dllexport)
#else
#define DECLDIR __declspec(dllimport)
#endif

extern "C"
{
 DECLDIR int InitializeSession();
 DECLDIR int ReadTimerValue(unsigned int *readValue);
 DECLDIR int WriteTimerValue(unsigned int writeValue);
 DECLDIR int EnableTimer(unsigned int timeoutValue, int min_sec);
 DECLDIR int CloseSession();
}

typedef enum {
 SUCCESS = 0,
 DRIVER_ERROR,
 INVALID_HANDLE,
 INVALID_PARAMETER
} ErrorCodes;

typedef enum {
 SECONDS = 0,
 MINUTES
} Units;

#endif

 Watchdog Timer Windows Device Driver Package

06/23/2025 6

Rev 4.1

Appendix B: WDTPetApp.cpp

// WDTPetApp.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#define no_init_all
#include "wdtDLL.h"
#include <Windows.h>
#include <conio.h>
#include <process.h>

//reads time every second and prints timeout remaining
void countThread(void *)
{
 unsigned int reading;
 while (1)
 {
 if (ReadTimerValue(&reading))
 std::cout<<"Failed to read\n";

 std::cout << "Current timeout: "<<reading<<"\n";
 Sleep(1000); //1 second sleep
 }
}

int _tmain(int argc, _TCHAR* argv[])
{
 int errCode = 0;
 unsigned int timeout = 30;
 int timeunit = SECONDS;

 //Pet app --- Require key press to reset timer to 30 seconds.

//If key press is q then it will close the driver and quit.
 try
 {
 //Get access to driver, and check status
 if (errCode = InitializeSession())
 {
 std::cout<<"Failed to open device\n";
 throw errCode;
 }

 if (errCode = EnableTimer(5, timeunit))
 {
 std::cout << "Failed to start WDT with the following timeout and min_sec args "
<< timeout << " " << timeunit << "\n";
 throw errCode;
 }
 else
 {
 std::cout << "Set timer to " << timeout << " seconds\n";
 }

 Sleep(2000);//two second sleep

 DisableTimer();

 Watchdog Timer Windows Device Driver Package

06/23/2025 7

Rev 4.1

 //enable WDT in seconds mode with a timeout of 30, and check success
 if (errCode = EnableTimer(timeout, timeunit))
 {
 std::cout << "Failed to start WDT with the following timeout and min_sec
args " << timeout << " " << timeunit << "\n";
 throw errCode;
 }
 else
 {
 std::cout<<"Set timer to "<<timeout<<" seconds\n";
 }

 _beginthread(countThread, 0, NULL);

 //Loops writing 30 second timeout and reading timeout.
 //Waits for keypress to write 30 second timeout
 //q closes the driver and breaks loop
 while (1)
 {
 if (errCode = WriteTimerValue(timeout))
 {
 std::cout<<"Failed to write time to driver\n";
 throw errCode;
 }

 std::cout<<"Press key to reset timer to "<<timeout<<" seconds. Press q to close
WDT and quit application.\n";

 _kbhit();
 if (_getch() == 'q')
 {
 if (errCode = DisableTimer())
 {
 std::cout << "Failed to disable timer.\n";
 throw errCode;
 }

 if (errCode = CloseSession())
 {
 std::cout<<"Failed to close Driver.\n";
 throw errCode;
 }
 std::cout<<"WDT closed. Exiting\n";
 break;
 }
 }
 }
 catch (int err)
 {
 switch (err)
 {
 case DRIVER_ERROR:
 {
 std::cout << "Failed to communicate with driver\n";
 break;
 }

 Watchdog Timer Windows Device Driver Package

06/23/2025 8

Rev 4.1

 case INVALID_HANDLE:
 {
 std::cout << "Failed to obtain handle to driver\n";
 break;
 }
 case INVALID_PARAMETER:
 {
 std::cout << "Bad parameter\n";
 break;
 }
 default :
 std::cout << "Unknown error!\n";
 }
 system("pause");
 }
 return 0;
}

