
8/28/2017 1

Rev 1.0

LVDS Controller Windows

Device Driver Package

1 Introduction

1.1 The WinSystems PPM-C407 full-featured, high-performance single board computer

offers a single Low-Voltage Differential Signaling (LVDS) video interface. LVDS panel

brightness can be controlled with a backlight enable signal and a PWM brightness control signal.

The provided driver and DLL allow user control of the panel backlight under the Windows 7 and

10 operating systems.

1.2 The package utilizes the Intel® AtomTM Processor E3800 Windows 7 I2C Driver. The

driver files are provided in this package. The driver name is iaioi2c.sys.

1.3 The LVDS Controller driver package is designed for and has been verified with 32-bit

and 64-bit versions of Microsoft Windows 7 and 10.

2 Installation

2.1 Before using the DLL, the Intel I2C driver (iaioi2c.sys) may have to be installed on the

SBC. Open the Windows Device Manager to see if the devices are already installed. They will be

under the System Devices item.

2.2 The driver, support files, and console applications are supplied in a zip file. The

following files are included:

• iaioi2c.sys – Windows Driver file

• iaioi2c.inf - Windows installation file

• iaioi2c.cat - Windows catalog file

• WdfCoinstaller01011.dll – Windows co-installer

• lvdsControllerDLL.dll – Windows DLL file

• lvdsControllerDLL.lib – Windows library file

• lvdsControllerDLL.h – Windows include file

• panel.cpp – Windows application source

• panel.exe – Windows application

• vcredist_x86 or vcredist_x64 - Microsoft Visual C++ Redistributable

2.3 Installation is accomplished via the ‘Add legacy hardware’ selection found in the Action

menu of the Windows Device Manager. Navigate to the drive and folder containing the driver

 LVDS Controller Windows Device Driver Package

8/28/2017 2

Rev 1.0

files and select iaioi2c.inf. The Windows installer will copy the iaioi2c.sys driver file to the

appropriate directory in the Windows installation.

2.4 In Device Manager, three Intel Atom/Celeron/Pentium Processor I2C Controller devices

should appear under the System Devices item. A reboot may be required after installation.

2.5 The included console application, panel.exe, can be used to verify driver installation and

functionality. Usage of the programs is described later in this document. These applications

require an LVDS panel with the proper cable connected to J5 and J500.

3 Driver Overview and Architecture

3.1 The file lvdsControllerDLL.dll is a Windows Dynamic-Link Library (DLL) which

facilitates access to the underlying hardware through the Intel I2C driver.

3.2 The driver utilizes the I/O Control (IOCTL) Request framework to control the register set

of the LVDS Bridge.

4 Driver Usage

4.1 The lvdsControllerDLL.h file included in the driver distribution contains the function

definitions to be used by an application to communicate with the iaioi2c.sys driver. This file is

included in Appendix A: lvdsControllerDLL.h.

4.1 An application calls the function InitializeSession to open the driver. This is required

before any of the other functions can be called. The following example opens the Intel I2C driver.

If a zero is returned, then the driver has been successfully initialized. Any other returned value

indicates that an error has occurred and the device is unusable.

 if (InitializeSession())

 printf(“Error opening device.\n”);

4.3 Once the driver is initialized, the other functions can be used to control the LVDS panel

brightness. Following is a description and sample code for each function. For all functions, if a

zero is returned, the function was successful. Any other returned value indicates that an error or

board condition prevented function completion.

4.3.1 int blOnOff(unsigned int blControl)

This function enables or disables the LVDS panel.

if (blOnOff(BL_ON))

 printf("\nError turning backlight on.\n\n");

 LVDS Controller Windows Device Driver Package

8/28/2017 3

Rev 1.0

4.3.2 int blSetFrequency(unsigned int blFrequency)

This function sets the desired frequency of the backlight PWM signal. The blFrequency

variable must be one of the preconfigured values found in the enum variable of the same

name.

if (blSetFrequency(BL_FREQ_225))

 printf("Error setting frequency.\n");

Valid options for blFrequency are:

• BL_FREQ_500 → 500Hz

• BL_FREQ_400 → 400 Hz

• BL_FREQ_300 → 300 Hz

• BL_FREQ_275 → 275 Hz

• BL_FREQ_250 → 250 Hz

• BL_FREQ_225 → 225 Hz

• BL_FREQ_200 → 200 Hz

• BL_FREQ_100 → 100 Hz

4.3.3 int blSetDutyCycle(unsigned int blDutyCycle)

This function sets the desired duty cycle of the backlight PWM signal. The blDutyCycle

variable must be one of the preconfigured values found in the enum variable of the same

name.

if (blSetDutyCycle(BL_DUTY_75))

 printf("Error setting duty cycle.\n");

Valid options for blDutyCycle are:

• BL_DUTY_100 → 100%

• BL_DUTY_87_5 → 87.5%

• BL_DUTY_75 → 75%

• BL_DUTY_62_5 → 62.5%

• BL_DUTY_50 → 50%

• BL_DUTY_37_5 → 37.5%

• BL_DUTY_25 → 25%

• BL_DUTY_12_5 → 12.5%

• BL_DUTY_0 → 0%

The duty cycle settings are dependent on the frequency selected. As a result, the duty cycle

should always be set after any frequency change.

4.3.4 int CloseSession(void)

This function is used to close the Intel I2C driver. If a zero is returned, the driver is closed.

Otherwise there was an error and the driver is still open.

 if (CloseSession())

 LVDS Controller Windows Device Driver Package

8/28/2017 4

Rev 1.0

 printf(“Error closing driver\n”);

4.4 Every function returns a zero or a positive integer value indicating success or failure. If a

zero is returned, the function has completed successfully. If a failure occurs, the specific value

returned provides more clarity as to the failure mechanism.

4.4.1 DRIVER_ERROR (1)

This error indicates that some function within the driver has failed. This error indicates that

one of the IOCTL calls within the driver itself has not completed successfully. Using

Windows Device Manager, verify that the driver is loaded and has no resource conflicts.

4.4.2 INVALID_HANDLE (2)

This error indicates that the driver has not initialized or closed. The driver attempts to obtain

a handle to the I2C device, and this error indicates that the handle was not obtained. Verify

that the driver has loaded successfully.

4.4.3 INVALID_PARAMETER (3)

This error indicates that one of the parameters in a DLL function is out of bounds. Check

your parameter definitions.

5 Sample Applications

There is one sample Windows console application provided in the driver package, panel.exe. The

source code for the application is provided in the Appendix section.

5.1 Panel Application

The panel sample application is a simple program that cycles through every possible frequency

and duty cycle combination with a two second pause between each step. It then sets the PWM at

225Hz with a 75% duty cycle. The panel is then disabled for two seconds and then re-enabled.

Any error conditions are reported and the program is terminated immediately.

 LVDS Controller Windows Device Driver Package

8/28/2017 5

Rev 1.0

Appendix A: lvdsControllerDLL.h

//**
//

// Copyright 2017 by WinSystems Inc.

//
//**

//

// Name : lvdsControllerDLL.h

//
// Project : LVDS Controller Windows DLL

//

// Author : Paul DeMetrotion
//

//**

//

// Date Rev Description
// -------- ------- ---

// 08/07/17 1.0 Original Release of DLL

//
//**

#ifndef _LVDS_CONTROLLER_DLL_H_
 #define _LVDS_CONTROLLER_DLL_H_

#if defined DLL_EXPORT

#define DECLDIR __declspec(dllexport)
#else

#define DECLDIR __declspec(dllimport)

#endif

extern "C"

{
 DECLDIR int InitializeSession();

 DECLDIR int blOnOff(unsigned int blControl);

 DECLDIR int blSetFrequency(unsigned int blFrequency);

 DECLDIR int blSetDutyCycle(unsigned int blDutyCycle);
 DECLDIR int CloseSession();

}

typedef enum {

 SUCCESS = 0,

 DRIVER_ERROR,

 INVALID_HANDLE,
 INVALID_PARAMETER

} ErrorCodes;

typedef enum {

 BL_ON = 0,

 BL_OFF
} blControl;

typedef enum {

 BL_FREQ_500 = 0, // 500Hz
 BL_FREQ_400, // 400 Hz

 BL_FREQ_300, // 300 Hz

 BL_FREQ_275, // 275 Hz

 LVDS Controller Windows Device Driver Package

8/28/2017 6

Rev 1.0

 BL_FREQ_250, // 250 Hz
 BL_FREQ_225, // 225 Hz

 BL_FREQ_200, // 200 Hz

 BL_FREQ_100, // 100 Hz

 MAX_BL_FREQ_OPTIONS
} blFrequency;

typedef enum {
 BL_DUTY_100 = 0, // 100 %

 BL_DUTY_87_5, // 87.5%

 BL_DUTY_75, // 75%
 BL_DUTY_62_5, // 62.5%

 BL_DUTY_50, // 50%

 BL_DUTY_37_5, // 37.5%

 BL_DUTY_25, // 25%
 BL_DUTY_12_5, // 12.5%

 BL_DUTY_0, // 0%

 MAX_BL_DUTY_OPTIONS
} blDutyCycle;

#endif

 LVDS Controller Windows Device Driver Package

8/28/2017 7

Rev 1.0

Appendix B: panel.cpp

//**

//
// Copyright 2017 by WinSystems Inc.

//

//**
//

// Name : panel.cpp

//
// Project : LVDS Controller Console Application

//

// Author : Paul DeMetrotion

//
//**

//

// Date Rev Description
// -------- ------- ---

// 08/07/17 1.0 Original Release

//
//**

#include "stdafx.h"

#include <stdio.h>
#include <stdlib.h>

#include <windows.h>

#include "lvdsControllerDLL.h"

#define MAJOR_VER 1

#define MINOR_VER 0

int _tmain(int argc, _TCHAR* argv[])

{

 int dllReturn = 0;

 printf("LVDS Controller Application : panel\n");

 printf("Version %d.%d\n\n", MAJOR_VER, MINOR_VER);

 dllReturn = InitializeSession();

 if (dllReturn)
 {

 printf("Error initializing session with code %d.\n", dllReturn);

 exit(dllReturn);
 }

 else

 {
 printf("Device opened.\n");

 }

 for (int i = 0; i < MAX_BL_FREQ_OPTIONS; i++)
 {

 if (blSetFrequency(i))

 {
 printf("\nError setting frequency with code %d.\n", dllReturn);

 exit(dllReturn);

 }

 LVDS Controller Windows Device Driver Package

8/28/2017 8

Rev 1.0

 for (int j = 0; j < MAX_BL_DUTY_OPTIONS; j++)

 {

 if (blSetDutyCycle(j))

 {
 printf("\nError setting duty cycle with code %d.\n", dllReturn);

 exit(dllReturn);

 }

 Sleep(2000);

 }
 }

 if (blSetFrequency(BL_FREQ_225))

 {
 printf("\nError setting frequency with code %d.\n", dllReturn);

 exit(dllReturn);

 }

 if (blSetDutyCycle(BL_DUTY_75))

 {
 printf("\nError setting duty cycle with code %d\n", dllReturn);

 exit(dllReturn);

 }

 printf("Panel will be disabled in 2 seconds.\n");

 Sleep(2000);

 if (blOnOff(BL_OFF))

 printf("\nError turning backlight off.\n\n");

 Sleep(2000);

 printf("Panel enabled again.\n");

 if (blOnOff(BL_ON))

 printf("\nError turning backlight on.\n\n");

 dllReturn = CloseSession();

 if (dllReturn)
 {

 printf("Error closing session with code %d.\n", dllReturn);

 exit(dllReturn);
 }

 printf("Device closed.\n\n");

 return dllReturn;

}

