[image: winlogo]
IO60 SPI DEVICE DRIVER
[bookmark: _GoBack]UBUNTU 14.04 LTS

Contents
Revision History	2
References	2
Scope	3
Hardware Description	3
Device Driver Description	3
Driver Build and Installation	3
Device Driver Usage	6
Miscellaneous Device Driver Functionality	7
IOCTL_GET_VERSION	7
Device Driver High-level Functionality	7
IOCTL_IO60_SPI_WRITE	8
IOCTL_SPI_WRITE_THEN_READ	8
IOCTL_SPI_READ_WHILE_WRITING	9
Device Driver Functionality for use with the IO60-MIO DAC4 expansion card	10
IOCTL_IO60_SPI_DAC_READ_REG	10
Appendix A - Contents of the io60_spi_api.h header file	11
Appendix B - Device Security & Device Access Control List	13

[bookmark: _Toc423502454][bookmark: _Toc425251881][bookmark: _Toc427068430]Revision History
	
Revision
	Date
	Author Initials
	Comments

	1.0
	08/11/2015
	pjp
	Initial release

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

[bookmark: _Toc427068431]References
IO60 Design Guide
SPI Interface Specification

[bookmark: _Toc427068432]Scope
This document will describe the design and usage of the SBC35-C398 Ubuntu 14.04 LTS IO60 SPI device driver.
[bookmark: _Toc427068433]Hardware Description
The SBC35-C398 single board computer (SBC) has an on-board WinSystems proprietary IO60 expansion interface that allows expansion cards to extend the functionality of the SBC. The IO60 interface contains a Serial Peripheral Interface (SPI) bus that can be used to interface to industry standard, low speed, low pin count peripheral devices such as sensors, displays, and expansion circuits.
The IO60 SPI interface is accessed through the Freescale i.MX6 SPI master controller using the standard Linux SPI master controller functions. The WinSystems IO60-SPI device driver “layers” on top of the underlying Linux SPI device driver and provides a simplified interface for accessing IO60 SPI devices.
[bookmark: _Toc427068434]Device Driver Description
The Ubuntu SBC35-C398 IO60-SPI device driver was developed as a kernel mode bus driver.
Functionality in the device driver permits application level SPI read and write operations without the need to program the i.MX6 SPI master controller’s registers. Driver functionality is implemented that allows “read-and-write”, “read”, and “read-while-writing” operations to be performed with only a single call into the driver.
On startup, the device driver will create four independent but related system devices. Each of the created devices uses a physical SPI chip select that is used to address the SPI slave device[footnoteRef:1]. The following lists the Linux system devices created by this device driver: [1: The SPI bus protocol normally supports 8 Chip Select signals, however the IO60-SPI interface uses only the 1st four SPI Chip Selects.]

	/dev/io60_spi_cs0
	/dev/io60_spi_cs1
	/dev/io60_spi_cs2
	/dev/io60_spi_cs3
Each of the above system devices may be acquired by application software using the standard Linux file open operation. Once opened, subsequent file operations using the Linux ioctl function will target the SPI slave device that is hardwired to respond to the corresponding SPI Chip Select.
[bookmark: _Toc427068435]Driver Build and Installation
Building the SBC35-C398 IO60 SPI device driver is not supported on the target platform. It must be built as part of the Linux kernel image on a cross development host. The SBC35-C398 IO60-SPI device driver may be built as an installable module, or as a static device driver that is linked directly into the kernel image.
The SBC35-C398 IO60 SPI device driver may be obtained from WinSystems as a prebuilt kernel module packaged in an archive file that contains the kernel module, and a makefile that can be used to install the module into the proper file system location. A pair of BASH scripts is also provided that permit loading and unloading the driver on demand.
The following documents the steps necessary to install the SPI device driver on a running SBC35-C398 Ubuntu system. Open a BASH shell window on the system.
1. Unpack the archive file into an empty directory. In the example that follows, this directory is /home/winsys/io60. From the BASH shell, enter the following commands to unpack the archive file:
cd /home/winsys/io60
tar –xzf io60.tgz

After unpacking the following directory will exist in the /home/winsys/io60 directory:
io60_spi

2. Enter the following commands in the BASH shell to install the device driver:
cd io60_spi
sudo make install

At this point, the device driver binaries have been created and copied to a location in the Linux files system so that they can be used for insertion or deletion to/from a running kernel. A pair of BASH scripts is located in the /home/winsys/io60/io60_spi directory that can be used to insert or remove the device driver module from a running kernel[footnoteRef:2]. To insert the module, enter the following in the BASH shell window: [2: When operating normally, the driver can be configured to automatically load when the platform is booted. Step 3 explains how to modify a pair of system files so that the driver loads on platform startup. The pair of BASH insert/remove scripts is primarily intended for use when modifying the device driver and testing its operation.]

sudo spi_drv_load
sudo chmod 666 /dev/io60_spi

To uninstall the driver from a running kernel, enter the following in the BASH shell window:
sudo spi_drv_unload

3. In order for the device driver to be loaded at platform boot, two system files must be modified. These files are /etc/modules and /etc/rc.local. 	
A. Open the /etc/modules file in a text editor[footnoteRef:3], and add the following line to it: [3: Super-user/root permissions are required to write this file.]

io60_spi

B. Open the /etc/rc.local file in a text editor[footnoteRef:4], and add the following line to it before the “exit 0” line at the bottom of the file: [4: Super-user/root permissions are required to write this file.]

chmod 666 /dev/io60_spi

An ANSI standard C header file that contain device related definitions and constants is included in the driver archive file. This header files should be copied to a location where it is accessible to the build system that is created to build applications that use the IO60 SPI device driver. For reference, these files are also listed in the appendices to this document. These files are:
io60_spi_api.h	contains the IO control codes used by the SPI device driver.

[bookmark: _Toc427068436]Device Driver Usage
This section will detail the functionality supported by the IO60 SPI device driver. For additional details on using this functionality, see the IO60 SPI example code that can be obtained from WinSystems.
Each device IO Control Code will be listed, followed by an explanation of its usage and the parameters passed to the device driver for the IO Control Code. Values returned from the driver upon completion of IO Control Code request are also provided in the descriptions.
All of the following IO control codes are used with the Linux API function ioctl. The definition of this function and its parameters[footnoteRef:5] are: [5: The formal definition of the function ioctl is that of a function that uses a variable length argument (varg) list for all parameters after the unsigned long int Request parameter (#2); the I2C device driver does not employ the varg parameter list method and instead defines the 3rd (and last) parameter as a void * (a.k.a. – pvoid).]

int ioctl(int hDevice, unsigned long int Request, void *pBuffer)
hDevice	The device handle obtained with a call to open.
Request	The control code to execute.
pBuffer	Pointer to buffer the driver will use to send and receive data[footnoteRef:6]. [6: The use of the pBuffer parameter is entirely dependent on the definition of the IO control code that will execute. For instance, with the IO control code that returns the driver’s internal version/revision, the driver code explicitly expects this parameter to be a pointer to an unsigned 32 bit memory location. Other IO control codes use this parameter as a pointer to an unsigned 8 bit memory location.]

Function ioctl will return a -1 if an error occurred, otherwise it will return the number of bytes either read or written with the specified IO Control Code operation.

[bookmark: _Toc427068437]Miscellaneous Device Driver Functionality
This section will describe device driver functionality that is not directly related to SPI data transactions.
[bookmark: _Toc427068438]IOCTL_GET_VERSION
Returns the 32 bit internal device driver version. The version is in the format MM.mm.NNNN where MM is major driver version, mm is the minor driver version, and NNNN is a daily build incrementing number. The version is returned to the location pointed to by the pBuffer parameter.
	pBuffer
	Pointer to unsigned 32 bit variable

	Number of bytes copied to address pointed to by pBuffer
	sizeof(unsigned _int32)

If the call to ioctl completes successfully, the function will return the value of sizeof(unsigned _int32). On failure, the returned value will be -1.
[bookmark: _Toc427068439]Device Driver High-level Functionality
This section of the IO60 SPI device driver documentation will detail the use of the high level functionality of the IO60 device driver. The following IO control codes perform entire SPI bus transactions using a single device driver call. These control codes wrap all the needed SPI register programming inside the particular device IO request. The control codes described in this section can be used for the majority of all SPI device driver interactions.
To pass the needed parameters to the following IO control codes, the application code should allocate a struct SPI_XFER, fill in the structure fields with the appropriate values, and then pass the SPI_XFER structure to the device driver using one of the supported IO control request codes.
The data structure SPI_XFER has the following format:
struct SPI_XFER {
 puint8_t pTxBuffer;
 puint8_t pRxBuffer;
 uint8_t TxLen;
 uint8_t RxLen;
 };

The table below describes the contents of each of the struct SPI_XFER fields:
	
	

	
	

	
	

	pTxBuffer
	Pointer to uint8_t array that contains the bytes to transfer to the SPI slave device

	pRxBuffer
	Pointer to uint8_t array that will receive the bytes sent by the SPI slave device

	TxLen
	Number of bytes to transfer to SPI slave device

	RxLen
	Number of bytes to receive from SPI slave device

The actual data to send to the SPI slave device is in the buffer referenced by pTxBuffer. The data received from the slave will be copied to the buffer referenced by pRxBuffer.
[bookmark: _Toc427068440]IOCTL_IO60_SPI_WRITE
This IO control code request will perform a SPI data write to the slave device.
The data to be transmitted to the SPI slave device is contained in the buffer pointed to by the pTxBuffer field of the SPI_XFER structure. The number of bytes to transmit to the slave device is specified with the TxLen field of the SPI_XFER structure. No data is read from the SPI slave device with this operation.
	pBuffer
	Pointer to a struct SPI_XFER

	Number of bytes copied from address pointed to by pBuffer[footnoteRef:7] [7: The SPI_XFER structure contains a pair of buffer pointers, pTxBuffer and pRxBuffer; pTxBuffer is used to access the data that is to be transmitted to the SPI slave, and pRxBuffer is used as a destination address for data read from the SPI slave. Therefore, the amount of data transferred into and out of the device driver is not fixed at the size of the SPI_XFER structure.]

	sizeof(struct SPI_XFER)

If the SPI transfer is successful, the value returned by this IO control request code will be sizeof(struct SPI_XFER). If there was an error in the SPI transfer, the value returned will be < 0.
[bookmark: _Toc427068441]IOCTL_SPI_WRITE_THEN_READ
This IO control code request will perform a SPI data transfer to the slave device.
The data to be transmitted to the SPI slave device is contained in the buffer pointed to by the pTxBuffer field of the SPI_XFER structure. The number of bytes to transmit to the slave device is specified with the TxLen field of the SPI_XFER structure. After transmitting the number of bytes specified by the TxLen field of the SPI_XFER structure, the device driver will then initiate a follow on SPI cycle that will read the number of bytes specified by the RxLen field of the SPI_XFER structure, and copy the data read to the buffer location specified with the pRxBuffer field of the SPI_XFER structure.
	pBuffer
	Pointer to a struct SPI_XFER

	Number of bytes copied from address pointed to by pBuffer[footnoteRef:8] [8: The SPI_XFER structure contains a pair of buffer pointers, pTxBuffer and pRxBuffer; pTxBuffer is used to access the data that is to be transmitted to the SPI slave, and pRxBuffer is used as a destination address for data read from the SPI slave. Therefore, the amount of data transferred into and out of the device driver is not fixed at the size of the SPI_XFER structure.]

	sizeof(struct SPI_XFER)

If the SPI transfer is successful, the value returned by this IO control request code will be sizeof(struct SPI_XFER). If there was an error in the SPI transfer, the value returned will be < 0.
[bookmark: _Toc427068442]IOCTL_SPI_READ_WHILE_WRITING
This IO control code request will perform a SPI data transfer to the slave device.
The data to be transmitted to the SPI slave device is contained in the buffer pointed to by the pTxBuffer field of the SPI_XFER structure. The number of bytes to transmit to the slave device is specified with the TxLen field of the SPI_XFER structure. While transmitting the specified bytes to the slave device, the device driver will simultaneously read the number of bytes specified by the RxLen field of the SPI_XFER structure, and copy the data read to the buffer location specified with the pRxBuffer field of the SPI_XFER structure.
	pBuffer
	Pointer to a struct SPI_XFER

	Number of bytes copied from address pointed to by pBuffer[footnoteRef:9] [9: The SPI_XFER structure contains a pair of buffer pointers, pTxBuffer and pRxBuffer; pTxBuffer is used to access the data that is to be transmitted to the SPI slave, and pRxBuffer is used as a destination address for data read from the SPI slave. Therefore, the amount of data transferred into and out of the device driver is not fixed at the size of the SPI_XFER structure.]

	sizeof(struct SPI_XFER)

If the SPI transfer is successful, the value returned by this IO control request code will be sizeof(struct SPI_XFER). If there was an error in the SPI transfer, the value returned will be < 0.
[bookmark: _Toc423948742]

[bookmark: _Toc427068443]Device Driver Functionality for use with the IO60-MIO DAC4 expansion card
This section will document the device IO control request codes used with the DAC4 module of the WinSystems’ IO60-M410-1 board. This functionality was placed in the IO60 SPI device driver in order to simplify reading of the DAC4 registers.
[bookmark: _Toc427068444]IOCTL_IO60_SPI_DAC_READ_REG
This driver request will perform a read operation of the register specified in the data passed to the driver from the calling application.
	pBuffer
	Pointer to a struct SPI_XFER

	Number of bytes copied from address pointed to by pBuffer
	sizeof(struct SPI_XFER)

See the function io60_dac4_ReadRegister in the source code module io60_mio_dac4.c for details on the use of this request. The io60_mio_dac4.c file is part of the IO60 SPI Example Applications source code collection that may be obtained from WinSystems.
Upon successful completion of this request, the device driver will return a value that is equal to sizeof(struct SPI_XFER). If an error occurs during this request, the device driver will return a value < 0.

[bookmark: _Toc427068445]Appendix A - Contents of the io60_spi_api.h header file

///**
//
// Copyright 2014 by WinSystems Inc.
//
// Permission is hereby granted to the purchaser of WinSystems GPIO cards
// and CPU products incorporating a GPIO device, to distribute any binary
// file or files compiled using this source code directly or in any work
// derived by the user from this file. In no case may the source code,
// original or derived from this file, be distributed to any third party
// except by explicit permission of WinSystems. This file is distributed
// on an "As-is" basis and no warranty as to performance or fitness of pur-
// poses is expressed or implied. In no case shall WinSystems be liable for
// any direct or indirect loss or damage, real or consequential resulting
// from the usage of this source code. It is the user's sole responsibility
// to determine fitness for any considered purpose.
//
///**
//
// Name : public.h
//
// Project : SBC35-C405
//
// Author : pjp
//
// Public definitions for use with the SBC35-C398 IO60 M410 device driver
//
///**
//
// Date Revision Description
// -------- -------- ---
// 07/29/15 0.1 PJP - Original
//
///**

#ifndef _PUBLIC_IO60_SPI_API_H
#define _PUBLIC_IO60_SPI_API_H

///

#define IOCTL_TYPE 'p'

//
// Define the command set for the device. These are the device IO control codes
// for direct access to the SPI registers in the Lattice Mach XO2 device
//

#define IOCTL_GET_VERSION _IOR(IOCTL_TYPE, 0, pvoid)
#define IOCTL_SPI_WRITE _IOW(IOCTL_TYPE, 1, pvoid)
#define IOCTL_SPI_WRITE_THEN_READ _IOR(IOCTL_TYPE, 2, pvoid)
#define IOCTL_SPI_DAC_REG_READ _IOR(IOCTL_TYPE, 3, pvoid)
#define IOCTL_SPI_READ_WHILE_WRITING _IOR(IOCTL_TYPE, 4, pvoid)

///
//
// Define the errors that the device driver may produce
//

#define STATUS_SUCCESS 0
#define STATUS_REQUEST_IO_REGION_ERROR 2
#define STATUS_DEVICE_CONFIGURATION_ERROR 3
#define STATUS_INSUFFICIENT_RESOURCES 4
#define STATUS_BAD_DATA_COPY 6
#define STATUS_INVALID_DEVICE_REQUEST 7
#define STATUS_HARDWARE_TIMEOUT 8
#define STATUS_IOCTL_FAILURE 9
#define STATUS_OUT_OF_BOUNDS 10
#define STATUS_BAD_PARAMETER 11
#define STATUS_WAIT_TIMEOUT 12
#define STATUS_NULL_POINTER 13
#define STATUS_BAD_DEV_HANDLE 14
#define STATUS_GENERIC_ERROR 15

///

typedef struct _SPI_XFER_STRUCT {
 puint8_t pTxBuffer,
 pRxBuffer;
 uint8_t TxLen,
 RxLen;
 } SPI_XFER_STRUCT, *P_SPI_XFER_STRUCT;

///

#endif

[bookmark: _Toc427068446]Appendix B - Device Security & Device Access Control List

When the device driver is installed using the provided makefile target “install”, and inserted into the running kernel using the script “spi_drv_load”, a new entry is created in the Linux device hierarchy. By default, the new entry is given permissions that allow only the system and the root account to access the device. By changing the permissions on the /dev/io60_spi device, other accounts can be granted access to use the device. To change the access permissions on the device driver, enter the following from a BASH shell:
sudo chmod 666 /dev/io60_spi

If the driver is added to the list of startup device modules in the file /etc/modules, then the device permissions can also be changed at system startup by adding a line to the /etc/rc.local file.

Page 8 of 13

image1.jpeg

