

 OPERATIONS MANUAL
 PCM-COM8

WinSystems reserves the right to make changes in the circuitry
 and specifications at any time without notice.

 Copyright 2002 by WinSystems. All Rights Reserved.

NOTE: This manual has been designed and created for use as part of the WinSystems’ Technical Manuals
CD and/or the WinSystems’ website. If this manual or any portion of the manual is downloaded, copied or
emailed, the links to additional information (i.e. software, cable drawings) will be inoperable.

RE VI SION HIS TORY

P/N 403- 0308- 000

ECO Num ber Date Code Rev Level

ORIGI NATED 021101 B
03- 41 030514 B1
03- 60 030604 B2

TABLE OF CONTENTS

Section Paragraph Title Page

 Visual Index – Quick Reference i
1 General In formation 1-1
1.1 Features 1-1
1.2 General Description 1-1
1.3 Specifications 1-2

2 PCM-COM8 Technical Reference 2-1

2.1 Introduction 2-1
2.2 Configuration Address Selection 2-1
2.3 Configuration Registers 2-2
2.4 Interrupt Termination 2-3
2.5 RS-232/RS-422/RS-485 Mode Selection 2-4
2.6 Serial Port I/O Pin Definitions 2-6
2.7 EEPROM Programming Interface 2-7
2.8 PC/104 Bus Connectors 2-6
2.9 Jumper/Connector Summary 2-9

3 PCM-COM8 Software Examples 3-1

3.1 Introduction 3-1
3.2 Configuration Program Examples 3-1
3.3 Serial I/O Examples 3-3

 APPENDIX A EXAMPLE PROGRAMS SOURCE CODE
 APPENDIX B EXAR 16C854 Datasheet Reprint, Cable Drawings and
 Software Examples

 Warranty Statement

i OPERATIONS MANUAL PCM-COM8 030604

Visual Index – Quick Reference

For the convenience of the user, a copy of the Visual Index has been provided with direct
links to connector and jumper configuration data.

J7 Configuration Address SelectionJ9 Interrupt Termination J8 PC/104 Bus Connectors

 I/O Header
 J1

 J2
 I/O Header
 J14
 J15

J13 J12 J11 J10 J3 J4 J5 J6
 Configuration Jumper Block

1 GEN ERAL IN FOR MA TION

1.1 Fea tures
n Eight in de pend ently ad dress able COM chan nels
n Asynchronous data rates to 115Kbps
n UART ad dresses and in ter rupts are soft ware con fig ur able
n 1K Bit EE PROM stores con figu ra tion data
n 16C554 com pati ble UARTS with 128 byte TX/RX FIFOs
n In di vid ual se lec tion of RS-232/RS-422/RS-485 modes per chan nel
n Auto TX and Echoed RS-485 ca pa bil ity
n Jumper se lecta ble ter mi na tion avail able per channel
n +5 Volt only op era tion
n Ex tended tem pera ture -40°C to +85ºC op er at ing range
n Full com ple ment of Mo dem con trol sig nals
n Sup ports in di vid ual or s hared in ter rupts on a per chan nel basis

1.2 Gen eral De scrip tion
The PCM- COM8 is a PC/104 com pli ant 8- channel asynchronous com mu ni ca tions card. It is popu -

lated with two EXAR 16C854 Quad UARTs. A cus tom bus- interface chip pro vides for soft ware con -
figu ra tion of the UART ad dresses and in ter rupt as sign ments. Its on- chip state ma chine con trols stor age
and re trieval of con figu ra tion set tings to or from the on board 1Kbit se rial EE PROM. The board is ca pa -
ble of load ing cus to mized con figu ra tion set tings from the EE PROM at powe rup with out the need for
soft ware in ter ven tion. User se lecta ble jump ers al low for chan nel by chan nel con figu ra tion for RS- 232,
RS- 422 and RS- 485 op er at ing modes. An 8- bit in ter rupt status reg is ter al lows soft ware to “at a glance”
de ter mine which ports re quire serv ic ing when op er at ing in a shared in ter rupt en vi ron ment. The deep
128 byte trans mit and re ceive FI FOs along with the in ter rupt shar ing ca pa bili ties al low even a mod est
proc es sor to ade quately han dle the 8 ports on a con tinu ous ba sis even at higher baud rates.

030604 OPERATIONS MANUAL PCM-COM8 Page 1 - 1

1.3 Speci fi ca tions

1.3.1 Elec tri cal

Bus In ter face : PC/104 8- bit or 16- Bit ex pan sion bus

VCC: +5V ± 5% 125 mA RS- 232 Mode, typi cal in idle state
 350 mA RS- 422 Mode, typi cal with all transmit ters en abled and TX/RX

 termi na tion enabled

1.3.2 Me chani cal

Di men sions : 4.1 X 3.8 X .60 inches (with out ex pan sion mod ules or ca bles)

PC- Board : FR-4 Ep oxy Glass with 2 sig nal lay ers and 2 power planes with screened
component leg end, and plated through holes.

Con nec tors :
Se rial I/O : RA type IDH-20LP-SR3-TR
PC/104 : Teka type PC220

Jump ers : 2mm Jump ers. Sam tec type 2SN-BK-G

1.3.3 En vi ron men tal

Op er at ing Tem pera ture : -40° to +85° C

Non- Condensing Rela tive Hu mid ity : 5 to 95%

Page 1 - 2 OPERATIONS MANUAL PCM-COM8 030604

2 PCM-COM8 Tech ni cal Ref er ence

2.1 In tro duc tion
This sec tion of the man ual is in tended to pro vide the nec es sary in for ma tion to con fig ure the PCM-

 COM8 for the de sired mode(s) of op era tion. Win Sys tems main tains a Tech ni cal Sup port Group to help
an swer ques tions re gard ing con figu ra tion and pro gram ming of the board. For an swers to ques tions not
ade quately ad dressed in this man ual, con tact Tech ni cal Sup port at (817) 274- 7553 be tween 8AM and
5PM Cen tral Time. Ap pen dix D con tains the com plete re print of the XR16C854 Da tasheet and is pro -
vided to the pro gram mer as a source for all UART reg is ter pro gram ming in for ma tion.

2.2 Configuration Address Selection
The PCM- COM8 uses 8 I/O ad dresses for con figu ra tion and con trol of the COM port in ter face. The

in di vid ual COM port ad dresses are soft ware pro gram ma ble but it is nec es sary to have con trol reg is ters
at a known lo ca tion. Jumper block J7 se lects the I/O ad dress of the con figu ra tion reg is ters. Also note
that each en abled COM port uses 8 ad di tional I/O ad dresses.

030604 OPERATIONS MANUAL PCM-COM8 Page 2 - 1

J7

14 12 10 8 6 4 2
 o o o o o o o
 o o o o o o o
13 11 9 7 5 3 1

J7 Base I/O Ad dress se lect jumper

The base I/O ad dress is se lected by plac ing or re mov ing jump ers from the J7 jumper block ac cord -
ing to the bi nary ad dress de sired. A miss ing jumper is a ‘1’ and an in stalled jumper is a ‘0’. The ex am ple
be low shows the de fault set ting of 300H (11 0000 0XXX).

2.3 Configuration Registers
The PCM- COM8 al lows for soft ware con figu ra tion of all 8 UART base ad dresses as well as their

IRQ as sign ments. There is also a di rect in ter face to the 1Kbit on board EE PROM that can be used to
store and re trieve con figu ra tion set tings. The reg is ter and bit defi ni tions are shown in the fol low ing ta -
bles.

The use of the first three reg is ters is very straight for ward and al lows ap pli ca tion soft ware to de ter -
mine the cur rent UART ad dresses or in ter rupts and to change the cur rent map pings as de sired. Reg is -
ters at off sets 4 through 7 con trol the in ter face to the EE PROM. See Sec tion 2.7 ‘E EPROM
Pro gram ming In ter face’ for de tails.

BASE PORT + 0 - IN DEX REG IS TER (R/W)

 Bits 7 - 3 N/A - al ways reads 0
 Bits 2 - 0 In dex Value (UART num bers 0 to 7) This speci fies the UART for which the next two
 reg is ters ad dress.

BASE PORT + 1 - BASE AD DRESS REG IS TER (R/W)

 Bit 7 En able/Dis able UART (1 = en able)
 Bit 6 - 0 Up per 7 bits of the de sired 10- bit I/O Ad dress (i.e. For 300h value would be 60h)

BASE PORT + 2 - IRQ AS SIGN MENT REG IS TER (R/W)

 Bits 7 - 4 N/A - Al ways reads 0
 Bits 3 - 0 IRQ as sign ment 0 to 15. IRQ as signed to 0 is the same as dis abled.

NOTE : Not all IRQs are avail able on the PC/104 Bus. IRQs 1,8,13 are typi cally not avail able.

Page 2 - 2 OPERATIONS MANUAL PCM-COM8 030604

WinSystems - "The Embedded Systems Authority"

 2 o o 1
 4 o o 3
 6 o o 5
 8 o o 7
10 o o 9
12 o o 11
14 o o 13

A3
A4
A5
A6
A7
A8
A9

J7

Ex am ple base ad dress of 300H

BASE PORT + 3 - IN TER RUPT ID REG IS TER (RO)

 Bit 7 UART 8 has in ter rupt pend ing
 Bit 6 UART 7 has in ter rupt pend ing
 Bit 5 UART 6 has in ter rupt pend ing
 Bit 4 UART 5 has in ter rupt pend ing
 Bit 3 UART 4 has in ter rupt pend ing
 Bit 2 UART 3 has in ter rupt pend ing
 Bit 1 UART 2 has in ter rupt pend ing
 Bit 0 UART 1 has in ter rupt pend ing

BASE PORT + 4 - EE PROM COM MAND REG IS TER (R/W)

 Bits 7 - 0 EE PROM op er at ing com mand

BASE PORT + 5 - EE PROM HIGH DATA REG IS TER (R/W)

 Bits 7 - 0 Upper 8 Bits of EE PROM read/write data (Hold Base Ad dress of UART)

BASE PORT + 6 - EE PROM LOW DATA REG IS TER (R/W)

 Bits 7 - 0 Lower 8 Bits of EE PROM read/write data (Holds IRQ Set ting)

BASE PORT + 7 - COM MAND REG IS TER (WO)

 Bits 7 - 2 N/A

 Bit 1 Read Mul ti ple. Starts state ma chine to load con fig reg is ters from EE PROM

 Bit 0 Com mand Start. Writ ing a 1 to this bit starts the com mand speci fied in BASE+4

BASE PORT + 7 - STATUS REG IS TER (RO)

 Bit 7 1 = Not Busy, 0 = Busy

 Bit 6 1 = Trans fer in prog ress . When this bit is set all other reg is ters are un avail able.

2.4 Interrupt Termination
Even though the PCM- COM8 is fully soft ware con fig ur able, due to the na ture in which its in ter -

rupts are driven, a ter mi nat ing re sis tor MUST be en abled for all in ter rupts ac tu ally used on the board. A
jumper placed on the J9 jumper block cor re spond ing to the de sired IRQ places a 1K OHM re sis tor be -
tween the in ter rupt line and ground.

030604 OPERATIONS MANUAL PCM-COM8 Page 2 - 3

2.5 RS-232/RS-422/RS-485 Mode Select
Each of the 8 se rial chan nels on the PCM- COM8 can be in di vidu ally con fig ured for any one of a

number of op er at ing modes, in clud ing :

1. RS- 232 Mode
2. RS- 422 Mode with RTS trans mit ter en able
3. RS- 422 Mode with auto trans mit ter en able
4. RS- 485 Mode with RTS trans mit ter en able
5. RS- 485 Mode with RTS trans mit ter en able and echo back
6. RS- 485 Mode with auto trans mit ter en able
7. RS- 485 Mode with auto trans mit ter en able and echo back

Modes 2, 4, and 5 re quire the RTS bit in the MCR (Bit 1) be set in or der to Trans mit
Modes 4 and 5 Re quire that RTS in the MCR (Bit 1) be deas serted in or der to re ceive.

Each of the RS- 422/RS- 485 modes also al lows for jumper se lec tion of trans mit and/or re ceive ter -
mi na tion re sis tor(s). There is a 18 pin con figu ra tion jumper for each of the 8 ports that al lows the user to
se lect the op er at ing mode and its op tional fea tures and ter mi na tion. The Jumper num bers and cor re -
spond ing port num bers are shown on the fol low ing page. There are three choices for ter mi na tion when
RS- 422 or RS- 485 modes are used.

TX(100) - Places a 100 Ohm re sister across the TX+/TX- pair

RX(100) - Places a 100 Ohm re sis tor across the RX+/RX- pair

TX/RX(300) - Places a 100 Ohm Re sis tor from +5V to TX/RX+, a 100 Ohm re sis tor from TX/RX- to
 ground and a 100 Ohm re sis tor be tween TX/RX+ and TX/RX--

Page 2 - 4 OPERATIONS MANUAL PCM-COM8 030604

WinSystems - "The Embedded Systems Authority"

22 o o 21
20 o o 19
18 o o 17
16 o o 15
14 o o 13
12 o o 11
10 o o 9
 8 o o 7
 6 o o 5
 4 o o 3
 2 o o 1

IRQ3
IRQ4
IRQ5
IRQ6
IRQ7
IRQ14
IRQ15
IRQ12
IRQ11
IRQ10
IRQ9

J9

J9 In ter rupt ter mi na tion jumper

Each chan nel is con fig ured us ing its spe cific jumper block as shown above. The ta ble b elow shows
the ap pro pri ate jump er ing for the vari ous modes.

Mode # De scrip tion Jump ers
Ter mi na tion

TX (100) RX (100) TX/RX (300)

1 RS- 232 1-2 N/A N/A N/A

2 RS- 422 RTS En able 3-4, 9-10 11- 12 17- 18
11- 12
13- 14
15- 16

3 RS- 422 Auto En able 3-5, 9-10 (One node must
 use TX/RX 300 Ter mi na tion) N/A 17- 18

11- 12
13- 14
15- 16

4 RS- 485 RTS En able 3-4, 7-8 11- 12 N/A
11- 12
13- 14
15- 16

5 RS- 485 RTS En able with Echo- Back 3-4, 8-6 11- 12 N/A
11- 12
13- 14
15- 16

6 RS- 485 Auto En able
3-5, 7-8 (One node must use

TX/RX 300 Ter mi na tion) N/A N/A
11- 12
13- 14
15- 16

7 RS- 485 Auto En able with Echo -Back 3-5, 8-6 (One node must use
TX/RX 300 Ter mi na tion) N/A N/A

11- 12
13- 14
15- 16

030604 OPERATIONS MANUAL PCM-COM8 Page 2 - 5

WinSystems - "The Embedded Systems Authority"

18 o o 17
16 o o 15
14 o o 13
12 o o 11
10 o o 9
 8 o o 7
 6 o o 5
 4 o o 3
 2 o o 1

J10

 J11

 J3 J5 J6 J4

 J13 J12

Se rial Mode con figu ra tion jumpers

COM Port 1 - J3
COM Port 2 - J4
COM Port 3 - J5
COM Port 4 - J6
COM Port 5 - J13
COM Port 6 - J12
COM Port 7 - J11
COM Port 8 - J10

WinSystems – “The Embedded Systems Authority”

Page 2-6 OPERATIONS MANUAL PCM-COM8 030604

 1 o o 2
 3 o o 4
 5 o o 6
 7 o o 8
 9 o o 10
11 o o 12
13 o o 14
15 o o 16
17 o o 18
19 o o 20

BCDG
BRXG
BTXG
BDTRG
GND
BCDH
BRXH
BTXH
BDTRH
GND

BDSRG
BRTSG
BCTSG
BRIG

BDSRH
BRTSH
BCTSH
BRIH

J1, J2, J14, J15

1 2 3 4 5
o o o o o
 o o o o
 6 7 8 9

RS-232 Modes
1. CD
2. RX
3. TX
4. DTR
5. GND
6. DSR
7. RTS
8. CTS
9. RI

RS-422 Modes
1. N/A
2. TX+
3. TX-
4. N/A
5. GND
6. RX+
7. RX-
8. N/A
9.N/A

RS-485 Modes
1. N/A
2. TX/TR+
3. TX/TR-
4. N/A
5. GND
6. N/A
7. N/A
8. N/A
9.N/A

DB9 Male

2.6 Serial Port I/O Pin Definitions
The PCM-COM8 terminates its serial ports into four 20-pin IDC style .100” connectors. Each
connector supports two serial ports. J1 is for ports 1 and 2, J2 is for ports 3 and 4, J14 is for
ports 5 and 6, and J15 is for ports 7 and 8. WinSystems has available a pre-terminated cable
(CBL-173-1) that connects from the 20-pin IDC female to two 9-pin D-Sub male connectors.
Users wishing to create their own cables may use the cable drawings as a guide. When using the
standard WinSystems cables, the 9-pin D-Sub pin definitions are dependent upon the operating
mode of the channel. Shown below are the pin definitions for each of the three major operating
modes.

2.7 EEPROM Programming Interface

The PCM- COM8 has an onboard 1 Kbit serial EEPROM. At powerup the onboard state machine
loads eight 16- bit words from the EEPROM starting at address 0 into the configuration space for the
eight UARTS, setting their base addresses and interrupt assignments from the loaded data. A DOS
configuration program, config.exe, is supplied by WinSystems to allow the user to reprogram the
defaults. It may be desirable for application code to be able to access and store configuration data in
the EPROM directly. This section will briefly document the steps necessary to directly access the
EEPROM.

To read a 16- bit value from the EEPROM
1. Load the address (0-63) of the desired value in BASE+4 with Bit 7 set
2. Start the read operation by writing a 1 to BASE+7
3. Delay approximately 5mS
4. Poll BASE+7. When Bit 7 is set and Bit 6 is clear, the operation is complete
5. Extract the 16- bit data value. BASE+5 holds the upper 8 bits, BASE+6 holds the lower 8 bits

To Enable Writes to the EEPROM
1. Load BASE+4 with 30H
2. Start the operation by writing 1 to BASE+7
3. Delay approximately 5mS
4. Poll BASE+7. When Bit 7 is set and Bit 6 is clear, the operation is complete

To Write a 16- bit value to the EE PROM

1. Load the ad dress (0-63) of the des ti na tion lo ca tion to BASE+4 with Bit 6 set.
2. Load BASE+5 with the up per 8 bits of the 16- bit data value
3. Load BASE+6 with the lower 8 bits of the 16- bit data value
4. Start the op era tions by writ ing a 1 to BASE+7
5. De lay ap proxi mately 5mS
6. Poll BASE+7. When Bit 7 is set and Bit 6 is clear, the op era tion is com plete

To Dis able Writes to the EE PROM

1. Load BASE+4 with 0
2. Start the op era tion by writ ing 1 to BASE+7
3. De lay ap proxi mately 5mS
4. Poll BASE+7. When Bit 7 is set and Bit 6 is clear, the op era tion is complete

To Load Con figu ra tion Data from EE PROM into Con figu ra tion Reg is ters

1. Load the ad dress (0-63) of the first value in BASE+4 with Bit 7 set
2. Start the con figu ra tion load op era tion by writ ing a 3 to BASE+7
3. De lay ap proxi mately 5mS
4. Poll BASE+7. When Bit 7 is set and Bit 6 is clear, the op era tion is com plete

EE PROM AC CESS NOTES :

 1. By de fault, Writes are dis abled to the EE PROM. The en able se quence given above must be fol -
lowed bef ore Writes will be al lowed. It is ad vis able that the “Dis able Writes to EE PROM” se quence be
ac com plished after up dat ing EE PROM data. That will help avoid in ad ver tent Writes or cor rup tion of
the EE PROM data. The Win Sys tems con fig.exe pro gram dis ables EE PROM Writes bef ore ex it ing.

 2. There is no com mand to store all of the cur rent con fig data to EE PROM. It must be read from the
con figuration space and writ ten to the EE PROM word- by- word.

 3. At powe rup the data be gin ning at ad dress 0 will be loaded into the con figu ra tion space. It is pos -
si ble to store other con figu ra tions start ing at any ad dress, but they must be loaded un der pro gram con -
trol.

 4. If de sired, the 56 words of data not used for powe rup con figu ra tion (start ing at word 8), could be
used for stor age of any ar bi trary in for ma tion.

5. Ref er to the source code ex am ples in Sec tion 3 for ac tual work ing pro gram ex am ples.

030604 OPERATIONS MANUAL PCM-COM8 Page 2 - 7

WinSystems - "The Embedded Systems Authority"

2.8 PC/104 Bus Con nec tors
The PCM- COM8 plugs into the PC/104 bus us ing the con nec tors at J8. The PC/104 bus pin defi ni -

tions are shown here for ref er ence.

Page 2 - 8 OPERATIONS MANUAL PCM-COM8 030604

WinSystems - "The Embedded Systems Authority"

 D0 o o C0
 D1 o o C1
 D2 o o C2
 D3 o o C3
 D4 o o C4
 D5 o o C5
 D6 o o C6
 D7 o o C7
 D8 o o C8
 D9 o o C9
D10 o o C10
D11 o o C11
D12 o o C12
D13 o o C13
D14 o o C14
D15 o o C15
D16 o o C16
D17 o o C17
D18 o o C18
D19 o o C19

GND
MEMCS16*

IOCS16*
IRQ10
IRQ11
IRQ12
IRQ15
IRQ14

DACK0*
DRQ0

DACK5*
DRQ5

DACK6*
DRQ6

DACK7*
DRQ7

+5V
MASTER*

GND
GND

GND
SBHE*
LA23
LA22
LA21
LA20
LA19
LA18
LA17
MEMR*
MEMW*
SD8
SD9
SD10
SD11
SD12
SD13
SD14
SD15
KEY

 A1 o o B1
 A2 o o B2
 A3 o o B3
 A4 o o B4
 A5 o o B5
 A6 o o B6
 A7 o o B7
 A8 o o B8
 A9 o o B9
A10 o o B10
A11 o o B11
A12 o o B12
A13 o o B13
A14 o o B14
A15 o o B15
A16 o o B16
A17 o o B17
A18 o o B18
A19 o o B19
A20 o o B20
A21 o o B21
A22 o o B22
A23 o o B23
A24 o o B24
A25 o o B25
A26 o o B26
A27 o o B27
A28 o o B28
A29 o o B29
A30 o o B30
A31 o o B31
A32 o o B32

IOCHK*
SD7
SD6
SD5
SD4
SD3
SD2
SD1
SD0

IOCHRDY
AEN

SA19
SA18
SA17
SA16
SA15
SA14
SA13
SA12
SA11
SA10

SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SA0

GND

GND
RESET
+5V
IRQ9
-5V
DRQ2
-12V
SRDY
+12V
KEY
SMEMW*
SMEMR*
IOW*
IOR*
DACK3*
DRQ3
DACK1*
DRQ1
REFRESH*
BCLK
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
DACK2*
TC
BALE
+5V
OSC
GND
GND

2.9 Jumper/Con nec tor Sum mary

Jumper/ De scrip tion Page
Con nec tor Num ber

J1 PORT1/PORT2 I/O Header 2-6
J2 PORT3/PORT4 I/O Header 2-6
J3 PORT1 Con figu ra tion Jumper Block 2-5
J4 PORT2 Con figu ra tion Jumper Block 2-5
J5 PORT3 Con figu ra tion Jumper Block 2-5
J6 PORT4 Con figu ra tion Jumper Block 2-5
J7 Base I/O Ad dress Se lect jumper 2-1
J8 PC/104 Bus Con nec tor 2-8
J9 IRQ Ter mi na tion jumper block 2-3
J10 PORT8 Con figu ra tion Jumper Block 2-5
J11 PORT7 Con figu ra tion Jumper Block 2-5
J12 PORT6 Con figu ra tion Jumper Block 2-5
J13 PORT5 Con figu ra tion Jumper Block 2-5
J14 PORT7/PORT8 I/O Header 2-6
J15 PORT5/PORT6 I/O Header 2-6

030604 OPERATIONS MANUAL PCM-COM8 Page 2 - 9

WinSystems - "The Embedded Systems Authority"

3 PCM- COM8 Soft ware Ex am ples

3.1 In tro duc tion
This sec tion gives some ap pli ca tion code ex am ples of pro gram ming some of the ad vanced ca pa bili -

ties and fea tures of the PCM- COM8. The sam ples are pro vided by Win Sys tems on an “as- is” ba sis and
there is no war ranty or dec la ra tion of fit ness of pur pose as so ci ated with these ex am ples. All of the ac -
com pa ny ing pro grams and source code are Copy right 2002 by Win Sys tems Inc. All rights re served.
See the header files for al lowed us age, dis clo sure, and in cor po ra tion into ap pli ca tion code.

There are two classes of pro grams and sam ple code in this sec tion. The first por tion gives ex am ples
of ac cess ing the con figu ra tion reg is ters and the di rect ac cess of the on board EE PROM.

The sec ond sec tion is a set of C func tions writ ten in the DOS en vi ron ment that il lus trates the ini tiali -
za tion, data han dling, and in ter rupt han dling, for all 8 se rial ports. In di vid ual and shared in ter rupts are
sup ported. Data-flow hand shak ing, RS- 422, and RS- 485 are not supported in these sam ples.

3.2 Con figu ra tion Pro gram Ex am ples

3.2.1 SHOW COMS.EXE

SHOW COMS.EXE is an ex tremely sim ple DOS ap pli ca tion that sim ply reads out the cur rent con -
figu ra tion from the con figu ra tion reg is ters and prints the re sults to the screen. It is in voked at the DOS
com mand prompt with :

show coms 300

where the 300 is re placed with the ac tual hex ad dress that the board is jumpered for. This pro gram
serves as a con fir ma tion of the cur rent set tings of the ports. From a pro gram ming stand point ex am in ing
the source code for show coms.exe shows how the con figu ra tion reg is ters are read and de coded into
mean ing ful val ues.

3.2.2 INIT.EXE

INIT.EXE is an other even sim pler DOS pro gram that sim ply exe cutes the con figu ra tion load com -
mand which re loads all of the con figu ra tion reg is ters with the val ues stored in EE PROM. This pro gram
is pro vided pri mar ily as a pro gram ming ex am ple of how to load all of the con figu ra tion reg is ters at once
from the EE PROM. It can be exe cuted at the DOS prompt with :

init 300

030604 OPERATIONS MANUAL PCM-COM8 Page 3 - 1

As with the pre vious and all sub se quent ex am ples the I/O ad dress on the com mand line should be
re placed with the one for which the board is ac tu ally jumpered.

3.2.3 CON FIG.EXE

CON FIG.EXE is the grand daddy of the con figu ra tion ex am ples. This use ful pro gram is how, with -
out writ ing a bit of code, that the user can re pro gram the EE PROM for their de sired de faults that will be
re loaded at each powe rup auto mati cally. The pro gram is in voked at the DOS prompt with :

con fig 300 con fig.txt

As with the pre vious pro grams, the ac tual I/O port set by the jump ers on the board is used on the
com mand line. The sec ond ar gu ment is the name of an AS CII file con tain ing the port I/O address, in ter -
rupt, and en able status in struc tions. Each line is read by the pro gram and then the en tire con figu ra tion is
stored to the EE PROM at Ad dress 0. At the next powe rup the board will auto load the new con figu ra -
tion. Here is a sam ple of the con fig.txt file :

0 308 15 Y
1 310 15 Y
2 318 15 Y
3 320 15 Y
4 328 15 Y
5 330 15 Y
6 338 15 Y
7 340 15 Y

The first item in a line is the port number start ing with 0 for port 1. The sec ond item is the I/O ad dress
from 0 to 400H. The pro gram ex pects the value to be in Hex. The third item is the IRQ as sign ment from
0 to 15. These val ues are in deci mal. Set ting an IRQ of 0 ef fec tively dis ables in ter rupts from that port.
The board is fully ca pa ble of hard ware shar ing of in ter rupts and will do so on com mand as shown above
with all of the ports shar ing IRQ3. The soft ware how ever, must be cog ni zant of this shar ing and deal
with the in ter rupts ap pro pri ately. Lastly a ‘Y’ or ‘N’ char ac ter des ig nates whether the port is to be en -
abled or not. A ‘Y’ sig nals that it is to be en abled. A dis abled port uses no I/O space or IRQ re sources.
Ex tra lines or white space in the con figu ra tion file can con fuse the ele men tary pars ing done by CON -
FIG.EXE so the best course is sim ply to copy and care fully edit con figu ra tion files us ing text edi tors
that do not em bed any for mat ting info into the file (pure AS CII). This pro gram, when ex am ined at the
source level, com bines nearly all of the ele ments needed to pro gram mati cally re con fig ure the board.

Page 3 - 2 OPERATIONS MANUAL PCM-COM8 030604

WinSystems - "The Embedded Systems Authority"

3.3 Se rial I/O Ex am ples
The COM8IO.C and COM8IO.H files are in tended to dem on strate the deep FIFO ca pa bil ity of the

EXAR 16C854 quad UARTs, the abili ty of soft ware to auto- configure for the I/O port and in ter rupt as -
sign ments and to dem on strate how shared in ter rupts should be han dled on a multi- port board such as
the COM8. These files do not com prise a com pre hen sive driver al though for a large number of us ers
util iz ing RS- 232, they proba bly could be used as- is. Cus tomer written pro grams could be linked di -
rectly to the COM8 I/O rou tines con tained in these files. Be cause of the deep 128 byte FIFO there is no
im ple men ta tion of any type of flow- control. There is also no sup port for al ter nate com mu ni ca tions
modes such as RS- 422 or RS-485. The main func tions in the COM8IO.C file will be briefly de scribed
and any spe cial fea tures or ca ve ats will be enu mer ated. This dis cus sion should be fol lowed with the
source code list ing in hand.

3.3.1 COM8IO.C

This file be gins with a number of data and struc ture defi ni tions. All of the COM port op er at ing pa -
rame ters, as well as buffer point ers, are stored in an ar ray of eight struc tures named comm_struct[].

Ref er to the struc ture defi ni tion in COM8IO.H for par ticu lars on this struc ture. If ad di tional fea -
tures such as RS- 422 or RS- 485 sup port were to be added, flags and pa rame ters, could be added to
comm_struct[].

To make the code more read able, rather than an ar ray of func tions for the pri mary ISRs ,since
there’s a fixed number (8) we just de clare 8 unique ISR func tions, all of which will then vec tor to com -
mon han dler code.

The first real func tion is com8_init() which has no re turn value and takes no ar gu ments. This would
be the first func tion that any pro gram de sir ing to use the other func tions MUST call. This func tion reads
the con figu ra tion reg is ters on the PCM- COM8 and fills in comm_struct[] with the I/O port and in ter -
rupt as sign ment val ues. It also de fines a de fault baud rate of 38400. There is no ac tual UART ini tiali za -
tion ef fected in this func tion.

An ap pli ca tion af ter call ing com8_init() would then need to fill in any of the other pa rame ters in
comm_struct[] that are de sired such as baud rate or trans mit or re ceive FIFO lev els.

The next func tion that an ap pli ca tion would need to call bef ore per form ing I/O on a COM port is
com_open(). This func tion takes as an ar gu ment the COM port number 0-7 and re turns 0 on suc cess or
sev eral non- zero val ues on fail ure. Once this func tion has been called, the port is ready for I/O. Note that
this func tion can ini tial ize and util ize the en tire 128 byte FI FO and will build an in ter rupt shar ing mask
to al low the IS Rs to de ter mine what other ports are shar ing this in ter rupt. This is one of the long est and
most com plex func tions in the ex am ple. Note that the ini tiali za tion is hard wired to an 8 bit word with 1
stop bit and no par ity.

Once an ap pli ca tion is fin ished us ing one of the ports, it is rec om mended to call com_close(). This
func tion take the port number as an ar gu ment and re turns 0 on suc cess. Ports closed prop erly will re in -
state any pre vious in ter rupt han dlers, and shut down the port from gen er at ing any more in ter rupts.

The next thing in the source code is the eight pri mary in ter rupt serv ice rou tines isr_1() to isr_8().
These eight ISRs simply call a com mon han dler, com mon_isr(), with the pri mary port number as signed

030604 OPERATIONS MANUAL PCM-COM8 Page 3 - 3

WinSystems - "The Embedded Systems Authority"

to that in ter rupt as an ar gu ment. The pri mary pur pose of the com mon_isr() func tion is to poll the int_id
reg is ter to de ter mine which UARTs have in ter rupts pend ing and call han dler() with the port number
need ing serv ice as an ar gu ment. The com mon_isr() func tion con tin ues to poll and dis patch in ter rupts
un til the int_id reg is ter comes up 0, at which time it re- arms the in ter rupt con trol ler and ex its. The han -
dle() func tion does the meat of the work for an in ter rupt. Only one port at a time is serv iced within han -
dle(). The first task is to ex am ine the UARTs IIR reg is ter (off set 2) and de ter mine what is the high est
pri or ity in ter rupt source need ing serv ice. Each pos si ble cause for an in ter rupt is ex am ined by the ‘case’
state ment and han dled, in most cases, with in line code. Like the outer loop in com mon_isr() the han -
dler() func tion does not re turn un til ALL in ter rupts cur rently pend ing in the UART be ing serv iced have
been han dled. This is the key to han dling shared in ter rupts. It is impera tive that all sources and all
UARTs have been serv iced bef ore ex it ing the ISR or a lock out (no more in ter rupts serv iced) will oc cur.

The func tions that fol low are, more or less, or di nary se rial I/O func tions that you might ex pect.
com_putch() takes two ar gu ments, the port number and the char ac ter to send. com_puts() also re quires
two ar gu ments, the port number, and a pointer to a string to be sent. Note that this func tion will NOT
send an ar bi trary buffer of char ac ters and as sumes that there is a null ter mi nated string at the pointer’s
ad dress.

The next func tion com_check() is very use ful for in ter ro gat ing whether any char ac ters are cur rently
wait ing in the re ceive buffer. It takes a sin gle ar gu ment speci fy ing the COM port number and re turns 0
if there are cur rently no char ac ters in the re ceive buffer or 1, if there are 1 or more char ac ters avail able.

The func tion com_getch() takes the same ar gu ment of port number and re turns an avail able char ac -
ter or -1 if a time- out oc curred wait ing for a char ac ter. There are a cou ple of other func tions in the file
that are of lim ited gen eral util ity and can be ex am ined by the pro gram mer as de sired.

3.3.2 COM8TEST.C

This file is ac tu ally a lit tle test pro gram writ ten to test some of the func tion al ity of the sam ple I/O
rou tines pres ent in com8io.c . It has un der gone a number of it era tions and it is pre sented in its most re -
cent form when it was used to test Trans mit and Re ceive FIFO op era tion. The pro gram inits all eight
ports to 38400 baud with the Trans mit and Re ceive FIFO levels set and then sends a test string out Port
5. It then goes into a loop wait ing for in com ing char ac ters on any of the eight ports or a key board in put
which ter mi nates the pro gram. On ter mi nat ing, the pro gram prints some sta tis tics about the number of
char ac ters that were sent and re ceived by each chan nel as well as the number of trans mit and re ceive in -
ter rupts that were serv iced. If the pro gram is started, and then im me di ate ly ter mi nated, it should show
that on chan nel 5 a fairly large number of char ac ters were sent with only a few in ter rupts re quired to
send them. This pro gram was com piled with the Bor land C/C++ ver sion 3.1 and 5.1 compilers with the
com mand line :

bcc com8test.c com8io.c

A pre com piled ver sion of com8test.exe is also pres ent on the ac com pa ny ing disk ette.

Page 4 - 4 OPERATIONS MANUAL PCM-COM8 030604

WinSystems - "The Embedded Systems Authority"

APPENDIX A

 Example Programs Source Listings

/* showcoms.c Copyright 2002 WinSystems Inc. All rights reserved */
/***
*
* Name : showcoms.com
*
* Project : PCM-COM8
*
* Date : 10/17/02
*
* Revision : 1.00
*
* Author : Steve Mottin
*

*
* Revision History
*
* Date Rev Description
* -------- ----- ---
* 10/17/02 1.00 Initial version
*
**
*/

#include <stdio.h>
#include <dos.h>

int com8read(int index, int port);

unsigned base_port;

#define ADDRESS 1
#define IRQ_ASSIGN 2

main(int argc, char *argv[])
{
unsigned base_address[8];
unsigned irq_assign[8];
int x;

 if(argc != 2)
 {
 printf("usage : showcoms address\n");
 exit(1);
 }

 sscanf(argv[1],"%x",&base_port);

 printf("\n\nPCM-COM8 Control port at %04X\n\n",base_port);

 printf("COM Port Base Address IRQ Number Enabled\n");
 for(x=0; x<=7; x++)
 {
 printf(" %d\t\t",x);

 base_address[x] = com8read(x,ADDRESS);
 irq_assign[x] = com8read(x,IRQ_ASSIGN);
 printf("%04X\t\t",(base_address[x] &0x7f) << 3);

 if((irq_assign[x] & 0x0f) != 0)
 printf("%d\t\t",irq_assign[x] & 0x0f);
 else
 printf("N/A\t\t");

 if(base_address[x] & 0x80)
 printf("Y\n");
 else
 printf("N\n");
 }
}

int com8read(int index, int port)
{
 outportb(base_port, index);
 return(inportb(base_port+port));
}

/* config.c */

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

unsigned read_eeprom(int address);
void write_eeprom(int address, unsigned value);
void enable_write(void);
void disable_write(void);
void load_config(int address);

unsigned base_address;

char buffer[80];

main(int argc, char *argv[])
{
int x;
unsigned value;
FILE *fp;
unsigned address;
unsigned irq;
unsigned temp;
char enable;

 if(argc != 3)
 {
 printf("only %d arguments given\n",argc);
 printf("usage : program base_address program_file");
 exit(1);
 }

 sscanf(argv[1],"%x",&base_address);

 fp = fopen(argv[2],"r");

 if(fp == NULL)
 {
 printf("Can't open program file - Aborting\n");
 exit(1);
 }

 enable_write();

 while(fgets(buffer,70,fp) != NULL)
 {
 if(buffer[0] == '\x0a')
 break;
 sscanf(buffer,"%d %x %d %c",&address, &value, &irq, &enable);
 if(address > 7)
 {

 printf("Bad port number specified %d - Aborting\n",address);
 exit(1);
 }

 if((value <=0) || (value >= 0x400))
 {
 printf("Bad I/O Address specified %04x - Aborting\n",value);
 exit(2);
 }

 if((irq <=0) || (irq > 15))
 {
 printf("Bad IRQ specified %d - Aborting\n",irq);
 exit(3);
 }

 printf("Port %d Address %04X IRQ %d Enable = %c\n",address,value,irq,enable);
 temp = value >> 3;
 temp = temp << 8;

 if(enable == 'y' || enable == 'Y')
 temp = temp | 0x8000;

 temp = temp | (irq & 0x0f);

 write_eeprom(address,temp);

 }

 fclose(fp);
 disable_write();
 load_config(0);

}

/* Load up the config registers from the EEPROM starting from address */

void load_config(int address)
{
unsigned retry;

 outportb(base_address+4,address | 0x80);
 outportb(base_address + 7, 3); /* Start the command */

 delay(5);

 retry = 50000;

 while(retry--)
 {
 if((inportb(base_address + 7) & 0xc0) == 0x80)
 break;
 }
 if(retry == 0)

 printf("Load Config - Timeout Error\n");

}

void enable_write(void)
{
unsigned retry;

 outportb(base_address+4,0x30); /* Write out the command */

 outportb(base_address+7,1); /* Start the command */

 delay(5);

 retry = 50000;

 while(retry--)
 {
 if((inportb(base_address +7) & 0xc0) == 0x80)
 break;

 }
 if(retry == 0)
 printf("enable write - timeout error\n");

}

void disable_write(void)
{
unsigned retry;

 outportb(base_address+4,0x00); /* Write out the command */

 outportb(base_address+7,1); /* Start the command */

 delay(5);

 retry = 50000;

 while(retry--)
 {
 if((inportb(base_address +7) & 0xc0) == 0x80)
 break;

 }
 if(retry == 0)
 printf("disable write - timeout error\n");

}

void write_eeprom(int address, unsigned value)
{
unsigned retry;

 outportb(base_address+4,address | 0x40); /* Write out the command */

 outportb(base_address+5,value >> 8);
 outportb(base_address+6,value & 0xff);

 outportb(base_address+7,1); /* Start the command */

 delay(5);

 retry = 50000;

 while(retry--)
 {
 if((inportb(base_address +7) & 0xc0) == 0x80)
 break;

 }
 if(retry == 0)
 printf("write eeprom - timeout error\n");

}

unsigned read_eeprom(int address)
{
unsigned value;
unsigned retry;

 outportb(base_address+4,address | 0x80); /* Write out the command */
 outportb(base_address+7,1); /* Start the transfer */

 delay(5);

 value = 0;
 retry = 50000;
 while(retry--)
 {
 if((inportb(base_address +7) & 0xc0) == 0x80)
 break;

 }
 if(retry == 0)
 printf("read eeprom - timeout error\n");

 value = inportb(base_address +5);
 value = value << 8;
 value = value | inportb(base_address + 6);

 return(value);
}

/* init.c */

#include <stdio.h>
#include <dos.h>

unsigned read_eeprom(int address);
void write_eeprom(int address, unsigned value);
void enable_write(void);
void disable_write(void);
void load_config(int address);

unsigned base_address;

main(int argc, char *argv[])
{
int x;
unsigned value;

 if(argc != 2)
 {
 printf("usage : init base_address");
 exit(1);
 }

 sscanf(argv[1],"%x",&base_address);

 load_config(0);

}

/* Load up the config registers from the EEPROM starting from address */

void load_config(int address)
{
unsigned retry;

 outportb(base_address+4,address | 0x80);
 outportb(base_address + 7, 3); /* Start the command */

 delay(5);

 retry = 50000;

 while(retry--)
 {
 if((inportb(base_address + 7) & 0xc0) == 0x80)
 break;
 }
 if(retry == 0)
 printf("Load Config - Timeout Error\n");

}

void enable_write(void)
{
unsigned retry;

 outportb(base_address+4,0x30); /* Write out the command */

 outportb(base_address+7,1); /* Start the command */

 delay(5);

 retry = 50000;

 while(retry--)
 {
 if((inportb(base_address +7) & 0xc0) == 0x80)
 break;

 }
 if(retry == 0)
 printf("enable write - timeout error\n");

}

void disable_write(void)
{
unsigned retry;

 outportb(base_address+4,0x00); /* Write out the command */

 outportb(base_address+7,1); /* Start the command */

 delay(5);

 retry = 50000;

 while(retry--)
 {
 if((inportb(base_address +7) & 0xc0) == 0x80)
 break;

 }
 if(retry == 0)
 printf("disable write - timeout error\n");

}

void write_eeprom(int address, unsigned value)
{
unsigned retry;

 outportb(base_address+4,address | 0x40); /* Write out the command */

 outportb(base_address+5,value >> 8);
 outportb(base_address+6,value & 0xff);

 outportb(base_address+7,1); /* Start the command */

 delay(5);

 retry = 50000;

 while(retry--)
 {
 if((inportb(base_address +7) & 0xc0) == 0x80)
 break;

 }
 if(retry == 0)
 printf("write eeprom - timeout error\n");

}

unsigned read_eeprom(int address)
{
unsigned value;
unsigned retry;

 outportb(base_address+4,address | 0x80); /* Write out the command */
 outportb(base_address+7,1); /* Start the transfer */

 delay(5);

 value = 0;
 retry = 50000;
 while(retry--)
 {
 if((inportb(base_address +7) & 0xc0) == 0x80)
 break;

 }
 if(retry == 0)
 printf("read eeprom - timeout error\n");

 value = inportb(base_address +5);
 value = value << 8;
 value = value | inportb(base_address + 6);

 return(value);
}

/* COM8IO.C Copyright 2002 WinSystems Inc. All rights Reserved */
/**
*
* Name : com8io.c
*
* Project : WinSystems PCM-COM8 Demonstrataion Code
*
* Revision : 1.00
*
* Author : Steve Mottin
*

*
* Revision History :
*
* Date Revision Description
* ------- -------- --
* 10/30/02 1.00 Original
*

*
* COPYRIGHT NOTICE AND DISCLAIMER
*
* This source file is Copyright 2002 by WinSystems Inc, Arlington
* Texas. All rights reserved except as provided below.
*
* This file is intended to demonstrate possible usages and programming
* of the PCM-COM8 board. It has NOT been tested extensively in a
* multitude of environments and it is the users sole responsibility
* to determine fitness of purpose. This file is provided 'as-is'
* and WinSystems makes no warranty as to usability of these routines.
*
* Users of the WinSystems PCM-COM8 may use any or all of the functions
* in this file for incorporation in their application code utilizing the
* PCM-COM8 without license or permission.
*
* Other disclosure or use of this code is strictly prohibited.
* Refer to the WinSystems Hardware/Software Sales Agreement for other
* terms and conditions that may apply
*
**
*/

#include <dos.h>
#include "com8io.h"

struct com_port comm_struct[8];

int cflag = 0;
int irq_masks[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int intflag=0;

int int_id = 0;

int com8_base = 0;

void interrupt isr_0();
void interrupt isr_1();
void interrupt isr_2();
void interrupt isr_3();
void interrupt isr_4();
void interrupt isr_5();
void interrupt isr_6();
void interrupt isr_7();

void handle(int port_num);
void common_isr(int port_num);

/* ==================== Start of COM Functions =========================== */

void com8_init(unsigned base_port)
{
int x;
unsigned base_address;
unsigned irq_assign;

 com8_base = base_port;
 int_id = com8_base + 3;

 /* Read in all of the base_address and irq_assigns from the chip */

 for(x=0; x<8; x++)
 {
 comm_struct[x].int_num = 0;
 comm_struct[x].uart_base = 0;
 comm_struct[x].open_flag = 0;

 outportb(com8_base,x); /* Set the index */
 base_address = inportb(com8_base + 1);
 irq_assign = inportb(com8_base + 2);

 if((base_address & 0x80) == 0)
 base_address = 0;

 base_address = (base_address & 0x7f) << 3;
 irq_assign = irq_assign & 0x7f;

 if((base_address < 0x100) || (base_address > 0x400))
 {
 base_address = 0;
 irq_assign = 0;
 continue;
 }

 if((irq_assign == 0) || (irq_assign > 15))
 continue;

 comm_struct[x].int_num = irq_assign;

 comm_struct[x].uart_base = base_address;
 comm_struct[x].baud_rate = 38400L;

 }
}

int com_open(int port_num)
{
unsigned base_port;
unsigned baud_divisor;
int int_number;
unsigned mask_val;
int temp;

 if(comm_struct[port_num].open_flag == OPEN_MAGIC)
 return 3;

 if(port_num > 7)
 return 2;
 if(comm_struct[port_num].uart_base == 0)
 return 1;

 int_number = comm_struct[port_num].int_num;

 if(int_number < 2 || int_number > 15)
 return 2;

 /* Set up the baud rate */

 baud_divisor = (unsigned) (1843200L / (comm_struct[port_num].baud_rate * 16L));

 base_port = comm_struct[port_num].uart_base;

 outportb(base_port+3,inportb(base_port + 3) | 0x80);
 outportb(base_port+1, baud_divisor >> 8);
 outportb(base_port, baud_divisor & 0xff);
 outportb(base_port+3,inportb(base_port+3) & 0x7f);

 /* Check whether a vector is already in place for the specified
 IRQ. If so just add our port to the mask value
 */

 mask_val = 1 << port_num;

 if(irq_masks[int_number]) /* if non-zero */
 irq_masks[int_number] |= mask_val;
 else
 {
 irq_masks[int_number] |= mask_val;

 /* Install the interrupt vector */

 if(int_number > 7)
 int_number = int_number + 0x68;
 else
 int_number = int_number + 8;

 comm_struct[port_num].old_isr = getvect(int_number);

 disable();

 switch(port_num)
 {
 case 0:
 setvect(int_number,isr_0);
 break;
 case 1:
 setvect(int_number,isr_1);
 break;
 case 2:
 setvect(int_number,isr_2);
 break;
 case 3:
 setvect(int_number,isr_3);
 break;
 case 4:
 setvect(int_number,isr_4);
 break;
 case 5:
 setvect(int_number,isr_5);
 break;
 case 6:
 setvect(int_number,isr_6);
 break;
 case 7:
 setvect(int_number,isr_7);
 break;
 }

 }

 comm_struct[port_num].in_ptr = 0;
 comm_struct[port_num].out_ptr = 0;
 comm_struct[port_num].rx_int_count = 0;
 comm_struct[port_num].rx_char_count = 0;

 comm_struct[port_num].buff_cnt = 0;
 comm_struct[port_num].tx_head = 0;
 comm_struct[port_num].tx_tail = 0;
 comm_struct[port_num].tx_int_count = 0;
 comm_struct[port_num].tx_char_count = 0;

 outportb(base_port+3,3); /* 8-bits, 1 stop, no parity */
 outportb(base_port+4,0x0b); /* Set RTS, DTR, OUT2 */

 inportb(base_port);
 inportb(base_port);
 inportb(base_port);
 inportb(base_port);

 /* Check for and enable FIFO's if present */

 outportb(base_port + 2,0x0); /* Reset transmit and recieve FIFOs */
 outportb(base_port + 2,0x1); /* Reset transmit and recieve FIFOs */

 temp = inportb(base_port+3); /* Get current value */

 outportb(base_port+3,0xbf); /* Turns on Enhanced registers */

 outportb(base_port+2,0x10); /* Enable enhanced bits */

 outportb(base_port+1,0x30); /* Select RX FIFO table 'D' */
 outportb(base_port+0,comm_struct[port_num].rx_fifo_count);

 outportb(base_port+1,0xb0); /* Select TX FIFO table 'D' */
 outportb(base_port+0,comm_struct[port_num].tx_fifo_count);

 if(comm_struct[port_num].tx_fifo_count > 0)
 comm_struct[port_num].tx_fifo_max = 128 - comm_struct[port_num].tx_fifo_count;
 else
 comm_struct[port_num].tx_fifo_max = 0;

 outportb(base_port+3,temp); /* Restore original value */

 outportb(base_port + 2,0xa1);
 outportb(base_port + 2,0xa7); /* Reset all FIFO counters to 0 */

 /* End of FIFO CODE */

 int_number = comm_struct[port_num].int_num;

 if(int_number < 8)
 {
 mask_val = 1 << int_number;
 outportb(0x21,inportb(0x21) & ~mask_val);
 }
 else
 {
 mask_val = 1 << (int_number - 8);
 outportb(0xa1,inportb(0xa1) & ~mask_val);
 }

 comm_struct[port_num].open_flag = OPEN_MAGIC;

 enable();

 outportb(base_port+1,3); /* Enable TX/RX interrupts */

 return 0;
}

int com_close(int port_num)
{
struct com_port *ptr;
unsigned int_number;
unsigned mask_val;

 if(comm_struct[port_num].open_flag != OPEN_MAGIC)
 return(-1);

 ptr = &comm_struct[port_num];

 int_number = ptr->int_num;

 mask_val = 1 << port_num;

 mask_val = ~mask_val;

 irq_masks[int_number] &= mask_val; /* Clear the bit associated with us */

 if(irq_masks[int_number] == 0) /* If we're the last one using this IRQ */
 {
 disable();

 if(int_number < 8)
 {
 mask_val = 1 << int_number;
 outportb(0x21,inportb(0x21) | mask_val);
 }
 else
 {
 mask_val = 1 << (int_number - 8);
 outportb(0xa1,inportb(0xa1) | mask_val);
 }

 if(int_number > 7)
 int_number = int_number + 0x68;
 else
 int_number = int_number + 8;

 setvect(int_number,ptr->old_isr);

 enable();
 }

 return 0;
}

void interrupt isr_0(void)
{

 common_isr(0);
}

void interrupt isr_1(void)
{
 common_isr(1);
}

void interrupt isr_2(void)
{
 common_isr(2);
}

void interrupt isr_3(void)
{
 common_isr(3);
}

void interrupt isr_4(void)
{
 common_isr(4);
}

void interrupt isr_5(void)
{
 common_isr(5);
}

void interrupt isr_6(void)
{
 common_isr(6);
}

void interrupt isr_7(void)
{
 common_isr(7);
}

void common_isr(int port_num)
{
struct com_port *ptr;
unsigned pending_irqs;

 outportb(0x1ed,1);

 enable(); /* Must allow for nesting */

 ++intflag;

 ptr = &comm_struct[port_num];

 pending_irqs = inportb(int_id);
 pending_irqs &= irq_masks[ptr->int_num];

 while(pending_irqs)
 {
 if(pending_irqs & 1)
 handle(0);
 if(pending_irqs & 2)
 handle(1);
 if(pending_irqs & 4)
 handle(2);
 if(pending_irqs & 8)
 handle(3);
 if(pending_irqs & 0x10)
 handle(4);
 if(pending_irqs & 0x20)
 handle(5);
 if(pending_irqs & 0x40)
 handle(6);
 if(pending_irqs & 0x80)
 handle(7);

 pending_irqs = inportb(int_id);
 pending_irqs &= irq_masks[ptr->int_num];
 }
 if(ptr->int_num > 8)
 outportb(0xa0,0x20);

 outportb(0x1ed,0);
 outportb(0x20,0x20);
}

void handle(int port_num)
{
struct com_port *ptr;
int stat;
int x;

 ptr = &comm_struct[port_num];

 while(1)
 {
 stat = inportb(ptr->uart_base + 2);
 if(stat & 1)
 break;

 stat = (stat >> 1) & 3;
 switch(stat)
 {
 case 0: /* Modem Status Interrupt */
 inportb(ptr->uart_base + 6);
 break;
 case 1: /* TX Holding Register Empty */
 if(ptr->tx_tail == ptr->tx_head)
 {

 ptr->tx_int_count++;
 }
 else
 {
 ptr->tx_int_count++;

 if((inportb(ptr->uart_base + 5) & 0x20) && (ptr->tx_tail != ptr->
tx_head))
 {
 for(x=0; x < ptr->tx_fifo_max; x++)
 {
 ptr->tx_char_count++;
 outportb(ptr->uart_base,ptr->tx_buffer[ptr->tx_head++]);
 if(ptr->tx_head == BUFFER_SIZE)
 ptr->tx_head =0;

 if(ptr->tx_head == ptr->tx_tail)
 break;
 }
 }

 }
 break;

 case 2: /* Receive Data Ready */
 ptr->rx_int_count++;
 while(inportb(ptr->uart_base + 5) & 0x01)
 {
 ptr->rx_char_count++;
 ptr->buffer[ptr->in_ptr++] = inportb(ptr->uart_base);
 ptr->buff_cnt++;
 if(ptr->in_ptr == BUFFER_SIZE)
 ptr->in_ptr = 0;
 }
 break;
 case 3: /* Line status interrupt */
 inportb(ptr->uart_base + 5);
 break;
 }
 }
}

int com_putch(int com_port, char c)
{
struct com_port *ptr;
long retry;

 if(comm_struct[com_port].open_flag != OPEN_MAGIC)
 return(1);

 ptr = &comm_struct[com_port];

 disable();

 if((ptr->tx_head != ptr->tx_tail) || ((inportb(ptr->uart_base +5) & 0x20) == 0))
 {
 ptr->tx_buffer[ptr->tx_tail++] = c;
 if(ptr->tx_tail == BUFFER_SIZE)
 ptr->tx_tail = 0;
 }
 else
 {
 ptr->tx_char_count++;
 outportb(ptr->uart_base,c); /* Force feed the UART */
 }
 enable();
 return 0;

}

int com_puts(int com_port, char *str)
{
struct com_port *ptr;

 if(comm_struct[com_port].open_flag != OPEN_MAGIC)
 return(1);

 ptr = &comm_struct[com_port];

 disable();
 while(*str)
 {
 ptr->tx_buffer[ptr->tx_tail++] = *str++;
 if(ptr->tx_tail == BUFFER_SIZE)
 ptr->tx_tail = 0;
 }

 if(inportb(ptr->uart_base + 5) & 0x20)
 {
 ptr->tx_char_count++;
 outportb(ptr->uart_base,ptr->tx_buffer[ptr->tx_head++]);
 if(ptr->tx_head == BUFFER_SIZE)
 ptr->tx_head =0;
 }
 enable();

 return 0;
}

int com_check(int com_port)
{
struct com_port *ptr;

 if(comm_struct[com_port].open_flag != OPEN_MAGIC)
 return(0);

 ptr = &comm_struct[com_port];

 if(ptr->in_ptr == ptr->out_ptr)
 return 0;
 else
 return 1;
}

int com_getch(int com_port)
{
struct com_port *ptr;
int c;
long retry;

 if(comm_struct[com_port].open_flag != OPEN_MAGIC)
 return(-1);

 ptr = &comm_struct[com_port];

 retry = 100000l;

 while(retry--)
 {
 if(com_check(com_port))
 break;
 }

 if(retry == 0)
 return -1;

 disable();
 c = ptr->buffer[ptr->out_ptr++];
 if(ptr->out_ptr == BUFFER_SIZE)
 ptr->out_ptr = 0;
 enable();

 return(c & 0xff);
}

int com_gets(int com_port, char *str)
{
int c;
int count;

 count = 0;
 while(1)
 {
 c = com_getch(com_port);
 if(c == -1)
 return(1);
 if(c == '\r' && count == 0)
 continue;
 if(c == '\r')
 break;
 if(c != '\n')

 {
 *str++ = c;
 count++;
 }
 }
 *str = '\0';
 return 0;
}

int com_read(int com_port)
{
struct com_port *ptr;

 if(comm_struct[com_port].open_flag != OPEN_MAGIC)
 return(-1);

 ptr = &comm_struct[com_port];

 if(inportb(ptr->uart_base+5) & 1)
 return(inportb(ptr->uart_base) & 0xff);
 else
 return -1;
}

int com_flush(int port_num)
{
struct com_port *ptr;
int x;

 if(comm_struct[port_num].open_flag != OPEN_MAGIC)
 return(1);

 ptr = &comm_struct[port_num];
 disable();
 ptr->in_ptr = 0;
 ptr->out_ptr = 0;
 ptr->buff_cnt = 0;

 for(x=0; x < BUFFER_SIZE; x++)
 ptr->buffer[x] = 0;
 enable();
 while(com_read(port_num) != -1)
 ;

 return 0;
}

/**
*
* Name : com8io.h
*
* Project : WinSystems PCM-COM8 Demonstrataion Code
*
* Revision : 1.00
*
* Author : Steve Mottin
*

*
* Revision History :
*
* Date Revision Description
* ------- -------- --
* 10/30/02 1.00 Original
*

*
* COPYRIGHT NOTICE AND DISCLAIMER
*
* This source file is Copyright 2002 by WinSystems Inc, Arlington
* Texas. All rights reserved except as provided below.
*
* This file is intended to demonstrate possible usages and programming
* of the PCM-COM8 board. It has NOT been tested extensively in a
* multitude of environments and it is the users sole responsibility
* to determine fitness of purpose. This file is provided 'as-is'
* and WinSystems makes no warranty as to usability of these routines.
*
* Users of the WinSystems PCM-COM8 may use any or all of the functions
* in this file for incorporation in their application code utilizing the
* PCM-COM8 without license or permission.
*
* Other disclosure or use of this code is strictly prohibited.
* Refer to the WinSystems Hardware/Software Sales Agreement for other
* terms and conditions that may apply
*
**
*/

#define BUFFER_SIZE 1024

#define OPEN_MAGIC 0x2795

struct com_port {

 unsigned open_flag;
 unsigned uart_base;
 unsigned int_num;
 long baud_rate;
 void interrupt (*old_isr)();
 int in_ptr;

 int out_ptr;
 int rx_fifo_count;
 unsigned rx_int_count;
 unsigned rx_char_count;
 int tx_head;
 int tx_tail;
 int tx_fifo_count;
 int tx_fifo_max;
 unsigned tx_int_count;
 unsigned tx_char_count;
 unsigned buff_cnt;
 char tx_buffer[BUFFER_SIZE];
 char buffer[BUFFER_SIZE];
 };

extern struct com_port comm_struct[8];
extern int cflag;
extern int com_flag[];
extern int intflag;

void com8_init(unsigned base_port);
int com_open(int port_num);
int com_close(int port_num);
int com_putch(int com_port, char c);
int com_puts(int com_port, char *str);
int com_check(int com_port);
int com_flush(int port_num);
int com_read(int com_port);
int com_gets(int com_port, char *str);
int com_getch(int com_port);

APPENDIX B

 7 EXAR 16C854 Datasheet

EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 • (510) 668-7000 • FAX (510) 668-7017 • www.exar.com

XR16C854

Rev. 1.0

QUAD UART WITH 128 BYTE TX and RX FIFO and
AUTO RTS/CTS FLOW CONTROL

DESCRIPTION

The XR16C854 *1 (854) is a Universal Asynchronous Receiver and Transmitter (UART) with a dual foot print interface
compatible to ST16C654/654D, ST16C554/554D and ST68C554. The 854 is an enhanced quad UART each with
128 bytes of transmit and receive FIFOs, transmit and receive FIFO counters and trigger levels, automatic hardware
and software flow control, and data rates of up to 2.0 Mbps. Each UART has a set of registers that provide to the
user with operating status and control, receiver error indications, and modem serial interface controls. Selectable
interrupt polarity provides flexibility to meet design requirements. An internal loopback capability allows onboard
diagnostics. The 854 is available in 64 pin TQFP, 68 pin PLCC, and 100 pin QFP packages. The 64 pin package
offers the 16 mode interface which is compatible with the industry standard ST16C554 and ST16C654. The 68 and
100 pin packages offer an additional 68 mode interface which allows easy integration with Motorola processors. The
XR16C854CV (64 pin) offers three state interrupt output while the XR16C854DV provides continuous interrupt output.
The 64 pin devices do not offer TXRDY/RXRDY A-D status outputs or the prescaler clock selection option pin,
CLKSEL. The 100 pin package provides additional FIFO status outputs (-TXRDY and -RXRDY A-D), separate
infrared transmit data outputs (IRTX A-D) and channel C external clock input (CHCCLK). The 854 combines the 16
and 68 interface modes of previous ST16C554/654 and ST68C554/654 series in a single integrated chip.

FEATURES

• Pin compatible with the industry standard
ST16C554/654, ST68C554/654 and

 TI's TL16C554FN and TL16C754FN
• Four enhanced UARTs, each provides:

− Control and status register set
− Data rates of up to 2.0 Mbps
− 128 byte of TX and RX FIFO
− Programmable FIFO interrupt trigger level
− TX and RX FIFO level counter
− Automatic RTS/CTS flow control with hysteresis
− Automatic software Xon/Xoff flow control
− Software selectable Baud Rate Generator

 prescalable clock rates of 1X or 4X
− Standard modem serial interface or wireless
 infrared IrDA v1.0 encoder/decoder interface

• 100-QFP packages offer extras: TX and RX FIFO
status outputs, concurrent IrDA TX outputs and
external clock input for channel C

• Sleep mode (200µA typical)
• 3.3V and 5.0V supply operation

ORDERING INFORMATION

Part number Pins Package Operating temperature
XR16C854CJ 68 PLCC 0° C to + 70° C
XR16C854CV 64 TQFP 0° C to + 70° C
XR16C854DCV 64 TQFP 0° C to + 70° C
XR16C854CQ 100 QFP 0° C to + 70° C

Part number Pins Package Operating temperature
XR16C854IJ 68 PLCC -40° C to + 85° C
XR16C854IV 64 TQFP -40° C to + 85° C
XR16C854DIV 64 TQFP -40° C to + 85° C
XR16C854IQ 100 QFP -40° C to + 85° C

November-1999

Note *1: Covered by U.S. patent #5,649,122 and patent pending.

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 63

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

-DSRA

-CTSA

-DTRA

VCC

-RTSA

INTA

-CSA

TXA

- IOW

TXB

-CSB

INTB

-RTSB

G N D

-DTRB

-CTSB

-DSRB

-C
D

B

-R
IB

R
X

B

C
LK

S
E

L

16
/-

68 A
2

A
1

A
0

X
T

A
L1

X
T

A
L2

R
E

S
E

T

-R
X

R
D

Y

-T
X

R
D

Y

G
N

D

R
X

C

-R
IC

-C
D

C

-DSRD

-CTSD

-DTRD

G N D

-RTSD

INTD

-CSD

TXD

-IOR

TXC

-CSC

INTC

-RTSC

VCC

-DTRC

-CTSC

-DSRC

-C
D

A

-R
IA

R
X

A

G
N

D

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

IN
T

S
E

L

V
C

C

R
X

D

-R
ID

-C
D

D

X R 1 6 C 8 5 4
(16 Mode)

68-p in PLCC

Pin 31
Connec ted

to VCC

XR16C854

2

Rev. 1.0

64-Pin TQFP Package in 16 Mode Bus Interface (68 mode not available)

68-Pin PLCC Package in 68 Mode Bus Interface

Figure 1, Package and Pin Descriptions

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

-DSRA

-CTSA

-DTRA

V C C

-RTSA

-IRQ

-CS

TXA

R/ -W

TXB

A3

N.C.
-

R T S B
G N D

-DTRB

-CTSB

-C
D

B

-R
IB

R
X

B

C
LK

S
E

L

16
/-

68 A
2

A
1

A
0

X
T

A
L1

X
T

A
L2

-R
E

S
E

T

-R
X

R
D

Y

-T
X

R
D

Y

G
N

D

R
X

C

-R
IC

-DSRD

-CTSD

-DTRD

G N D

-RTSD

N.C.

N.C.

TXD

N.C.

TXC

A4

N.C.

-RTSC

V C C

-DTRC

-CTSC

-C
D

A

-R
IA

R
X

A

G
N

D

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

IN
T

S
E

L

V
C

C

R
X

D

-R
ID

XR16C854
(68 Mode)

68-pin PLCC

-DSRC

-C
D

C
-C

D
D

-DSRB 26 44

43
61

P in 31
Connected
to Ground

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

4 8

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

DSRA

CTSA

DTRA

VCC

RTSA

INTA

-CSA

TXA

- IOW

-TXB

-CSB

INTB

RTSB

GND

DTRB

CTSB

-D
S

R
B

-C
D

B

-R
IB

R
X

B

C
LK

S
E

L

A
2

A
1

A
0

X
T

A
L1

X
T

A
L2

R
E

S
E

T

G
N

D

R
X

C

-R
IC

-C
D

C

-D
S

R
C

-DSRD

-CTSD

-DTRD

GND

-RTSD

INTD

-CSD

TXD

-IOR

TXC

-CSC

INTC

-RTSC

VCC

-DTRC

-CTSC

-C
D

A

-R
IA

R
X

A

G
N

D

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

V
C

C

R
X

D

-R
ID

-C
D

D

XR16C854 and
X R 1 6 C 8 5 4 D
64-p in TQFP

XR16C854

3

Rev. 1.0

100-Pin QFP Package in 68 Mode bus Interface

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51

N
.C

.

N
.C

.

N
.C

.

N
.C

.

-T
X

R
D

Y
A

IR
T

X
A

-D
S

R
A

-C
T

S
A

-D
T

R
A

V
C

C

-R
T

S
A

IN
T

A

-C
S

A

T
X

A

-I
O

W

T
X

B

-C
S

B

IN
T

B

-R
T

S
B

G
N

D

-D
T

R
B

-C
T

S
B

-D
S

R
B

IR
T

X
B

-T
X

R
D

Y
B

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

-RXRDYB

-CDB

-RIB

RXB

CLKSEL

16/-68

A2

A1

A0

XTAL1

XTAL2

CHCCLK

RESET

-RXRDY

-TXRDY

GND

RXC

-RIC

-CDC

-RXRDYC

N
.C

.

N
.C

.

N
.C

.

N
.C

.

-C
S

R
D

Y

IR
T

X
D

-D
S

R
D

-C
T

S
D

-D
T

R
D

G
N

D

-R
T

S
D

IN
T

D

-C
S

D

T
X

D

-I
O

R

T
X

C

-C
S

C

IN
T

C

-R
T

S
C

V
C

C

-D
T

R
C

-C
T

S
C

-D
S

R
C

IR
T

X
C

-T
X

R
D

Y
C

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

-RXRDYA

-CDA

-RIA

RXA

GND

D7

D6

D5

D4

D3

D2

D1

D0

INTSEL

VCC

RXD

-RID

-CDD

-RXRDYD

-TXRDYD

X R 1 6 C 8 5 4
(16 Mode)

100-P in QFP

Pin 36
Connected

to VCC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51

N
.C

.

N
.C

.

N
.C

.

N
.C

.

-T
X

R
D

Y
A

IR
T

X
A

-D
S

R
A

-C
T

S
A

-D
T

R
A

V
C

C

-R
T

S
A

-I
R

Q

-C
S

T
X

A

R
/-

W

T
X

B

A
3

IN
T

B

-R
T

S
B

G
N

D

-D
T

R
B

-C
T

S
B

-D
S

R
B

IR
T

X
B

-T
X

R
D

Y
B

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

-RXRDYB

-CDB

-RIB

RXB

CLKSEL

16/-68

A2

A1

A0

XTAL1

XTAL2

C H C C L K

-RESET

-RXRDY

-TXRDY

G N D

R X C

-RIC

- C D C

-RXRDYC

N
.C

.

N
.C

.

N
.C

.

N
.C

.

-F
S

R
S

IR
T

X
D

-D
S

R
D

-C
T

S
D

-D
T

R
D

G
N

D

-R
T

S
D

IN
T

D

-C
S

D

T
X

D

-I
O

R

T
X

C

A
4

IN
T

C

-R
T

S
C

V
C

C

-D
T

R
C

-C
T

S
C

-D
S

R
C

IR
T

X
C

-T
X

R
D

Y
C

N
.C

.

N
.C

.

N
.C

.

N
.C

.

N
.C

.

-RXRDYA

-CDA

-RIA

RXA

G N D

D 7

D 6

D 5

D 4

D 3

D 2

D 1

D 0

INTSEL

V C C

R X D

-RID

- C D D

-RXRDYD

-TXRDYD

XR16C854
(68 mode)
QFP-100

Pin 36
Connected to

G R O U N D

100-Pin QFP Package in 16 Mode Bus Interface

XR16C854

4

Rev. 1.0

Figure 2, Block Diagram 16 Mode

D0-D7
- IOR
- I O W

R E S E T

A0-A2

-CS A-D

INT A-D
-RXRDY A -D
-TXRDY A -D

I N T S E L

-DTRA
-RTSA
-CTSA
-DSR
-CDA
-RIA

T X A

R X A

X T A L 1

C H C C L K

X T A L 2

D
at

a
bu

s
&

C
on

tr
ol

 L
og

ic

R
eg

is
te

r
S

el
ec

t
Lo

gi
c

In
te

rr
up

t
C

on
tr

ol
Lo

gi
c In

te
r

C
on

ne
ct

 B
us

 L
in

es
&

C
on

tr
ol

 s
ig

na
ls

I R T X A

Channe l -B
(same as Channel -A)

Channe l -C
(same as Channel -A)

Channe l -D
(same as Channel -A)

TXB, IRTXB
R X B
-DTRB, -RTSB
-CTSB, -DSRB
-CDB, -R IB

TXC, IRTXC
R X C
-DTRC, -RTSC
-CTSC, -DSRC
-CDC, -R IC

T X D , I R T X D
R X D
-DTRD, -RTSD
-CTSD, -DSRD
-CDD, -R ID

C
lo

ck
O

sc
.

Modem Cont ro l or
 General Purpose I /O Logic

Transmi t
FIFO Registers

Transmi t
Shif t Register

Receive
FIFO Registers

 TX F low
Contro l Logic

 RX F low
Control Logic

Receive
Shif t Register

I rDA Encoder

I rDA Decoder

Channe l -A

Baud Rate Registers & Generator

16/-68V C C

XR16C854

5

Rev. 1.0

Figure 3, Block Diagram 68 Mode

D 0 - D 7

R/ -W

- R E S E T

A0-A4
-CS

I R Q
- R X R D Y A - D
- T X R D Y A - D

-DTRA
-RTSA
-CTSA
-DSR
-CDA
-RIA

T X A

R X A

X T A L 1

C H C C L K

X T A L 2

D
at

a
bu

s
&

C
on

tr
ol

 L
og

ic

R
eg

is
te

r
S

el
ec

t
Lo

gi
c

In
te

rr
up

t
C

on
tr

ol
Lo

gi
c In

te
r

C
on

ne
ct

 B
us

 L
in

es
&

C
on

tr
ol

 s
ig

na
ls

I R T X A

Channe l -B
(same as Channel -A)

Channe l -C
(same as Channel -A)

Channe l -D
(same as Channel -A)

TXB, IRTXB
R X B
-DTRB, -RTSB
-CTSB, -DSRB
-CDB, -R IB

TXC, IRTXC
R X C
-DTRC, -RTSC
-CTSC, -DSRC
-CDC, -R IC

T X D , I R T X D
R X D
-DTRD, -RTSD
-CTSD, -DSRD
-CDD, -R ID

C
lo

ck
O

sc
.

Modem Cont ro l or
 General Purpose I /O Logic

Transmi t
FIFO Registers

Transmi t
Shif t Register

Receive
FIFO Registers

 TX F low
Contro l Logic

 RX F low
Contro l Logic

Receive
Shif t Register

I rDA Encoder

I rDA Decoder

Channe l -A

Baud Rate Registers & Generator

16/ -68G N D

XR16C854

6

Rev. 1.0

SYMBOL DESCRIPTION

Symbol Pin Signal Pin Description
68 100 64 type

16/-68 31 36 - I 16/68 Interface Mode Select (input with internal pull-up).
This input selects the 16 (Intel) or 68 (Motorola) bus operating
mode. The functions of -IOR, -IOW, INT A-D, and -CS A-D
are reassigned with the logical state of this pin. When this pin
is a logic 1, the 16 mode interface is selected. When this pin
is a logic 0, the 68 mode interface is selected. With this pin
at logic 0 for 68 mode, -IOW is reassigned to R/-W, RESET
is reassigned to -RESET, -IOR is not used, and INT A-D(s) are
internally connected in wire-or'ed configuration to become
IRQ output. This pin is not available on 64 pin packages which
operate in the 16 mode only.

A0 34 39 24 I Address-0 Select Bit.
Internal registers address selection in 16 and 68 modes.

A1 33 38 23 I Address-1 Select Bit.
Internal registers address selection in 16 and 68 modes.

A2 32 37 22 I Address-2 Select Bit.
Internal registers address selection in 16 and 68 modes.

A3-A4 20,50 17,64 - I Address 3-4 Select Bits. - 68 mode only.
These pins are used to address or select individual UART’s
(providing -CS is a logic 0). In the 16 mode, these pins are
reassigned as chip selects, see -CSB and -CSC. These pins
are not available on 64 pin packages which operate in the 16
mode only.

CLKSEL 30 35 21 I Clock Select (input with internal pull-up).
The pin selects the clock prescaler of 1X or 4X. The 1X clock
is selected when CLKSEL is a logic 1 (connected to VCC) or
the 4X is selected when CLKSEL is a logic 0 (connected to
GND). MCR bit-7 can override the state of this pin following a
reset or initialization (see MCR bit-7).

-CS 16 13 - I Chip Select. (active low) - 68 mode interface only.
All four UARTs (A-D) are enabled when the -CS pin is active.
A logic zero transition starts the internal read cycle to retrieve
the content of a register pointed by address bits A0 and A2
while a logic one transition writes the data byte on the bus to

XR16C854

7

Rev. 1.0

SYMBOL DESCRIPTION

Symbol Pin Signal Pin Description
68 100 64 type

the internal UART register. Individual UART channel is
selected by address bits A3 and A4. When 16 mode is
selected on 68/100 pin devices, this pin functions as -CSA,
see definition under -CS A-B. This pin is not available on 64
pin packages which operate in 16 mode only.

-CS A-B 16,20 13,17 7,11 I Chip Select A, B, C, D (active low) - 16 mode only.
-CS C-D 50,54 64,68 38,42 These pins enable the 854 for bus operation. They enable data

transfers between the controling processor and the
XR16C854 for the channel(s) addressed. Individual UART A,
B, C and D are addressed by providing a logic 0 on the
respective -CS A-D pin. When 68 mode is selected, the
functions of these pins are re-assigned. The 68 mode
functions are described under their respective name/pin
headings, and -CSD pin should be connected to logic 1.

-FSRS - 76 - I FIFO Status Register Select (active low, input with internal
pull-up) - 100 pin QFP package only.
The content of the FSTAT register is place on the data bus
when this pin becomes active. D0-D3 are inverted logic states
of -TXRDY A-D pins, and D4-D7 are inverted logic states of
-RXRDY A-D pins. Address line is not required when reading
this status register.

D0-D2 66-68 88-90 53-55 I/O Data Bus (Bi-directional).
D3-D7 1-5 91-95 56-60 These pins are the eight bit, three state data bus for transfer-

ring information to or from the controlling CPU. D0 is the least
significant bit and the first data bit in a transmit or receive serial
data stream.

INT A-B 15,21 12,18 6,12 O Interrupt A, B, C, D (active high) - 16 mode only.
INT C-D 49,55 63,69 37,43 These pins provide individual channel interrupts, INT A-D, and

are enabled with MCR bit-3 set to a logic 1. Individual interrupt
is enabled in each interrupt enable register (IER) in the UART.
Interrupt conditions include: receiver errors, receiver FIFO/
buffer data ready, transmit FIFO/buffer empty, or when a
serial input status flag is detected. In the 68 mode, the
functions of these pins are reassigned. 68 mode functions are
described under the their respective name/pin headings.

XR16C854

8

Rev. 1.0

SYMBOL DESCRIPTION

Symbol Pin Signal Pin Description
68 100 64 type

INTSEL 65 87 - I Interrupt Select. (active high, input with internal pull-down) -
16 mode only.
When 16 mode is selected, this pin can be used in conjunction
with MCR bit-3 to enable or disable the three state interrupts
on INT A-D pins or override MCR bit-3 and force continuous
interrupts. Interrupt outputs are enabled continuously by
making this pin a logic 1. Making this pin a logic 0 allows MCR
bit-3 to control the three state drivers to the interrupt output
pins. In this mode, MCR bit-3 is set to a logic 1 to enable the
continuous output. See MCR bit-3 description for full detail.
This pin must be at logic 0 in the 68 mode. Due to pin
limitations on 64 pin packages, this pin is not available. To
cover this limitation, two 64 pin TQFP package versions are
offered. The XR16C854D operates in the continuous interrupt
enable mode by bonded this pin to VCC internally. The
XR16C854 operates with MCR bit-3 software control by
bonding this pin to GND.

-IOR 52 66 40 I Input/Output Read. (active low strobe) - 16 mode only.
A logic 0 transition on this pin will load the contents of an
Internal register defined by address bits A0-A2 onto the
XR16C854 data bus (D0-D7) for access by an external CPU.
This pin should be tied to logic 1 in 68 mode operation.

-IOW 18 15 9 I Input/Output Write. (active low strobe) - 16 mode only.
A logic 0 transition on this pin will transfer the contents of the
data bus (D0-D7) from the external CPU to an internal register
that is defined by address bits A0/A2. When 68 mode is
selected (68/100 pin devices), this pin functions as R/-W, see
definition under R/W.

-IRQ 15 12 - O Interrupt Request (active low, open drain) - 68 mode only.
The interrupts from UART channels A-D are logically wire-
or'ed to function as a single IRQ interrupt output. The INTSEL
input pin must be connected to logic 0 for -IRQ to function
properly. This pin transitions to a logic 0 if enabled by the
Interrupt Enable Register (IER) whenever a UART channel
requires service. Individual channel interrupt status can be
determined by addressing each channel through its associ-

XR16C854

9

Rev. 1.0

SYMBOL DESCRIPTION

Symbol Pin Signal Pin Description
68 100 64 type

ated internal register, using -CS and A3-A4. An external pull-
up resistor of 5-10K ohms typical must be connected between
this pin and VCC.

IRTX A-B - 6,24 - O Infrared Transmit Data Output - 100 pin packages only.
IRTX C-D - 57,75 - These pins provide separate infrared IrDA v1.0 encoded TX

data outputs for UART channel A-D. The serial infrared data
IRTX A-D is transmitted via these pins with added start, stop
and parity bits. The IRTX signal will be a logic 0 during reset,
idle (no data), or when the transmitter is disabled. MCR bit-
6 selects the standard modem or infrared interface. Caution,
this pin is a logic 1 after power up and prior initialization. .

CHCCLK - 42 - I Channel C Clock Input - 100 pin QFP package only.
This input provides the clock for UART channel C. An external
16X baud clock or the crystal oscillator's output, XTAL2, must
be connected to this pin for normal operation. This input may
also be used with MIDI (Musical Instrument Digital Interface)
applications when an external MIDI clock is provided.

RESET 37 43 27 I Chip Reset.
 -RESET In the 16 mode, a logic 1 on this pin will reset the internal

registers and all the outputs. The UART transmitter output
and the receiver input will be disabled (logic 1) during reset
time. (See XR16C854 External Reset Conditions for initializa-
tion details.) When in 68 mode (16/-68 pin=0), this pin
functions similarly but, as an inverted reset signal, -RESET.

R/-W 18 15 - I Read/Write Strobe (active low) - 68 mode only.
This input determines the data bus operation. A logic one sets
for a read operation while a logic 0 sets for a write operation.

-RXRDY 38 44 - O Receive FIFO Ready (active low) - 68 mode in the 68 and 100
pin packages only.
The -RXRDY is a logically wire-or'ed status of all four receive
channel FIFOs, RXRDY A-D. A logic 0 indicates receive data
ready status, i.e. a RHR is full or a FIFO has one or more
receive data characters available for unloading. This pin goes
to a logic 1 when the FIFO/RHR are empty or when there is
no more character available in any of the FIFO or RHR. The

XR16C854

10

Rev. 1.0

SYMBOL DESCRIPTION

Symbol Pin Signal Pin Description
68 100 64 type

100 pin chip-sets provide both the combined wire “or’ed”
output and individual channel RXRDY-A-D outputs. RXRDY
A-D is discussed in a following paragraph. For 64/68 pin
packages, individual channel RX status is read by examining
individual internal registers via -CS and A0-A4 pin functions.

-RXRDY A-B - 100,31 Receive FIFO Ready A-D (active low) - 100 pin package only.
-RXRDY C-D - 50,82 - O This function provides the receive FIFO/RHR status for

individual receive channels (A-D). A logic 0 indicates there
is receive data to read/unload, i.e., receive ready status with
one or more RX characters available in the FIFO/RHR. This
pin is a logic 1 when the FIFO/RHR is empty or when the
programmed RX FIFO trigger level has not been reached.

-TXRDY 39 45 - O Transmit FIFO Ready (active low) - 68 mode in the 68 and 100
pin packages only.
The -TXRDY output is a logically wire-or'ed status of all four
transmit channel FIFOs, TXRDY A-D. A logic 0 indicates
transmit buffers ready status, i.e., at least one location is
empty and available in one of the TX channels (A-D) FIFOs.
This pin goes to a logic 1 when all four channels have no more
empty locations in the TX FIFO or THR. The 100 pin chip-sets
provide both the combined wire-or’ed output and individual
channel TXRDY-A-D outputs. TXRDY A-D is discussed in a
following paragraph. For 64/68 pin packages, individual chan-
nel TX status can be read by examining individual internal
registers via -CS and A0-A4 pin functions.

-TXRDY A-B - 5,25 Transmit FIFO Ready A-D (active low) - 100 pin package only.
-TXRDY C-D - 56,81 - O These outputs provide the transmit FIFO/THR status for

individual transmit channels (A-D). As such, an individual
channel’s -TXRDY A-D buffer ready status is indicated by a
logic 0, i.e., at least one location is available for data in the
FIFO. This pin goes to a logic 1 when there is no empty
locations in the FIFO.

XTAL1 35 40 25 I Crystal or External Clock Input
Functions as a crystal input or as an external clock input. A
crystal can be connected between this pin and XTAL2 to form
an internal oscillator circuit (see figure 4). Alternatively, an

XR16C854

11

Rev. 1.0

Symbol Pin Signal Pin Description
68 100 64 type

SYMBOL DESCRIPTION

external clock can be connected to this pin to provide custom
data rates (see Baud Rate Generator Programming and
optional CHCCLK).

XTAL2 36 41 26 O Crystal Oscillator or Buffered Clock Output
Crystal oscillator output or buffered clock output. (See also
XTAL1).

-CD A-B 9,27 99,32 64,18 I Carrier Detect A-D (active low inputs)
-CD C-D 43,61 49,83 31,49 These inputs are associated with individual UART channels A

through D. A logic 0 on this pin indicates that a carrier has
been detected by the modem for that channel. These pins may
be used as general purpose inputs when not used as CD
signals.

-CTS A-B 11,25 8,22 2,16 I Clear to Send A-D (active low inputs)
-CTS C-D 45,59 59,73 33,47 These inputs are associated with individual UART channels,

A through D. A logic 0 on the -CTS pin indicates the modem
or data set is ready to accept transmit data from the 854.
Status can be tested by reading MSR bit-4. This pin only
affects the transmit and receive operations when Auto CTS
function is enabled via the Enhanced Feature Register (EFR)
bit-7, for hardware flow control operation. These pins may be
used as general purpose inputs when not used as CTS
signals.

-DSR A-B 10,26 7,23 1,17 I Data Set Ready A-D (active low inputs)
-DSR C-D 44,60 58,74 32,48 These inputs are associated with individual UART channels,

A through D. A logic 0 on this pin indicates the modem or data
set is powered-on and is ready for data exchange with the
UART. This pin has no effect on the UART’s transmit or receive
operation. These pins may be used as general purpose inputs
when not used as DSR signals.

-DTR A-B 12,24 9,21 3,15 O Data Terminal Ready A-D (active low inputs)
-DTR C-D 46,58 60,72 34,46 These inputs are associated with individual UART channels,

A through D. A logic 0 on this pin indicates that the 854 is
powered-on and ready. This pin can be controlled via the
modem control register. Writing a logic 1 to MCR bit-0 will set
the -DTR output to logic 0, enabling the modem. This pin will

XR16C854

12

Rev. 1.0

Symbol Pin Signal Pin Description
68 100 64 type

SYMBOL DESCRIPTION

be a logic 1 after writing a logic 0 to MCR bit-0, after a reset
or during loopback mode. This pin has no effect on the UART’s
transmit or receive operation. These pins may be used as
general purpose inputs when not used as DTR signals.

-RI A-B 8,28 98,33 63,19 I Ring Indicator A-D (active low inputs)
-RI C-D 42,62 48,84 30,50 These inputs are associated with individual UART channels,

A through D. A logic 0 on this pin indicates the modem has
received a ringing signal from the telephone line. A logic 1
transition on this input pin will generate an interrupt. These
pins may be used as general purpose inputs when not used
as RI signals.

-RTS A-B 14,22 11,19 5,13 O Request to Send A-D (active low outputs)
-RTS C-D 48,56 62,70 36,44 These outputs are associated with individual UART channels,

A through D. A logic 0 on the -RTS pin indicates the transmitter
has data ready and waiting to send. Writing a logic 1 in the
modem control register (MCR bit-1) will set this pin to a logic
0 indicating data is available. This pin is a logic 1 after a reset
and during loopback mode. This pin only affects the transmit
and receive operations when Auto RTS function is enabled via
the Enhanced Feature Register (EFR) bit-6, for hardware flow
control operation. These pins may be used as general
purpose outputs when not used as RTS signals.

RX/IRRX A-B 7,29 97,34 62,20 I Receive Data / RX/IRRX A-D.
RX/IRRX C-D 41,63 47,85 29,51 These inputs are associated with individual channel's serial

receive data to the XR16C854. Two user selectable interface
options are available. The first option supports the standard
modem interface. The second option provides an Infrared
decoder interface, see figures 2/3. When interfacing to a
modem interface, the receive signal must idle at logic 1,
"marking", during normal operation and reset. The idle state,
"marking", for the Infrared decoder interface is a logic 0. MCR
bit-6 selects the standard modem or infrared interface. During
the local loopback mode, the RX input pin is disabled and TX
data is internally connected to the UART RX Input, internally.

TX/IRTX A-B 17,19 14,16 8,10 O Transmit Data A-D.
TX/IRTX C-D 51,53 65,67 39,41 These outputs are associated with individual serial transmit

XR16C854

13

Rev. 1.0

Symbol Pin Signal Pin Description
68 100 64 type

SYMBOL DESCRIPTION

channel data from the 854. Two user selectable interface
options are available. The first user option supports a standard
modem interface. The second option provides an Infrared
encoder interface, see figures 2/3. When using the standard
modem interface, the TX signal will be a logic 1 during reset,
idle (no data), or when the transmitter is disabled. The inactive
state (no data) for the Infrared encoder/ decoder interface is
a Logic 0. MCR bit-6 selects the standard modem or infrared
interface. During the local loopback mode, the TX input pin
is disabled and TX data is internally connected to the UART
RX Input.

VCC 13 10 4,21 PWR Power supply inputs.
VCC 47,64 61,86 35,52

GND 6,23 96,20 14,28 PWR Signal and power ground.
GND 40,57 46,71 45,61

XR16C854

14

Rev. 1.0

GENERAL DESCRIPTION

The XR16C854 (854) provides serial asynchronous
receive data synchronization, parallel-to-serial and se-
rial-to-parallel data conversions for both the transmitter
and receiver sections. These functions are necessary
for converting the serial data stream into parallel data
that is required with digital data systems. Synchroniza-
tion for the serial data stream is accomplished by adding
start and stops bits to the transmit data to form a data
character (character orientated protocol). Data integ-
rity is insured by attaching a parity bit to the data
character. The parity bit is checked by the receiver for
any transmission bit errors. The electronic circuitry to
provide all these functions is fairly complex especially
when manufactured on a single integrated silicon chip.
The XR16C854 represents such an integration with
greatly enhanced features. The 854 is fabricated with
an advanced CMOS process to achieve low drain power
and high speed requirements.

The 854 is an upward solution that provides 128 bytes
of transmit and receive FIFO memory, instead of 64
bytes provided in ST16C654, 16 bytes provided in the
16/68C554, or none in the 16/68C454. The 854 is
designed to work with high speed modems and shared
network environments, that require fast data process-
ing time. Increased performance is realized in the 854
by the larger transmit and receive FIFO’s. This allows
the external processor to handle more networking
tasks within a given time. For example, the ST16C554
with a 16 byte FIFO, unloads 16 bytes of receive data
in 1.53 ms (This example uses a character length of 11
bits, including start/stop bits at 115.2Kbps). This
means the external CPU will have to service the
receive FIFO at 1.53 ms intervals. However with the
128 byte FIFO in the 854, the data buffer will not require
unloading/loading for 12.2 ms. This increases the
service interval giving the external CPU additional time
for other applications and reducing the overall UART
interrupt servicing time. In addition, the 4 selectable
levels of FIFO trigger interrupt and automatic hard-
ware/software flow control is uniquely provided for
maximum data throughput performance especially
when operating in a multichannel environment. The
combination of the above greatly reduces the band-
width requirement of the external controlling CPU,
increases performance, and reduces power consump-
tion.

The 854 combines the package interface modes of the
16C554/654 and 68/C554/654 series on a single inte-
grated chip. The 16 mode interface is designed to
operate with the Intel type of microprocessor bus while
the 68 mode is intended to operate with Motorola, and
other popular microprocessors. Following a reset, the
854 is downward compatible with the ST16C454/
ST68C454 or the ST68C454/ST68C554 dependent
on the state of the interface mode selection pin, 16/-68.

The 854 is capable of operating up to 1.5Mbps with a 24
MHz crystal or with an external clock up to 40MHz.
With a crystal of 14.7464 MHz and through a software
option, the user can select data rates up to 460.8Kbps
or 921.6Kbps, 8 times faster than the 16C554.

The rich feature set of the 854 is available through
internal registers. Automatic hardware/software flow
control, selectable transmit and receive FIFO trigger
levels, selectable TX and RX baud rates, infrared
encoder/decoder interface, modem interface controls,
and a sleep mode are all standard features. MCR bit-
5 provides a facility for turning off (Xon) software flow
control with any incoming (RX) character. In the 16
mode INTSEL and MCR bit-3 can be configured to
provide a software controlled or continuous interrupt
capability. Due of pin limitations for the 64 pin 854 this
feature is offered by two different QFP packages. The
XR16C854DCV operates in the continuous interrupt
enable mode by bonded INTSEL to VCC internally.
The XR16C854CV operates in conjunction with MCR
bit-3 by bonding INTSEL to GND internally.

The 68 and 100 pin XR16C854 packages offer a clock
prescaler select pin to allow system/board designers to
preset the default baud rate table on power up. The
CLKSEL pin selects the 1X or 4X prescaler for the baud
rate generator. It can then be overridden following
initialization by MCR bit-7.

The 100 pin packages offer several enhances fea-
tures. These features include an CHCCLK clock input,
an internal FIFO monitor register, and separate IrDA
TX outputs. The CHCCLK must be connected to the
XTAL2 pin for normal operation or to external MIDI
(Music Instrument Digital Interface) oscillator for MIDI
applications. A separate register is provided for moni-
toring the real time status of the FIFO signals -TXRDY
and -RXRDY for each of the four UART channels (A-D).

XR16C854

15

Rev. 1.0

This reduces polling time involved in accessing indi-
vidual channels. The 100 pin QFP package also offers,
four separate IrDA (Infrared Data Association Stan-
dard) outputs for Infrared applications. These outputs
are provided in addition to the standard asynchronous
modem data outputs.

FUNCTIONAL DESCRIPTIONS

Interface Options

Two user interface modes are selectable for the 854
package. These interface modes are designated as
the “16 mode” and the “68 mode.” This nomenclature
corresponds to the early 16C554/654 and 68C554/654
package interfaces respectively.

The 16 Mode Interface

The 16 mode configures the package interface pins for
connection as a standard 16 series (Intel) device and
operates similar to the standard CPU interface avail-
able on the 16C554/654. In the 16 mode (pin 16/-68
logic 1) each UART is selected with individual chip
select (CSx) pins as shown in Table 1 below.

-CSA -CSB -CSC -CSD UART
CHANNEL

1 1 1 1 None
0 1 1 1 A
1 0 1 1 B
1 1 0 1 C
1 1 1 0 D

Table 1, Serial Port Channel Selection,
16 Mode Interface.

The 68 Mode Interface

The 68 mode configures the package interface pins for
connection with Motorola, and other popular micropro-
cessor bus types. The interface operates similar to the
68C554/654. In this mode the 854 decodes two addi-
tional addresses, A3-A4 to select one of the four UART

ports. The A3-A4 address decode function is used only
when in the 68 mode (16/-68 logic 0), and is shown in
Table 2 below.

-CS A4 A3 UART
CHANNEL

1 N/A N/A None
0 0 0 A
0 0 1 B
0 1 0 C
0 1 1 D

Table 2, Serial Port Channel Selection,
68 Mode Interface.

Internal Registers

Each UART in the 854 provides a total of 21 internal
registers for monitoring and control. Thesegresisters
are shown in Table 3 on next page are similar to those
already available in the standard 16C554/16C654.
These registers function as data holding registers (THR/
RHR), interrupt status and control registers (IER/ISR),
a FIFO control register (FCR), line status and control
registers (LCR/LSR), modem status and control regis-
ters (MCR/MSR), programmable data rate (clock) con-
trol registers (DLL/DLM), and a general purpose
scratched pad register (SPR). Beyond the general
16C554/654 features and capabilities, the 854 added
enhanced feature registers (EFR, Xon/Xoff-1, Xon/Xoff-
2, FCTR, TRG, EMSR) that provides on board hardware/
software flow control. Register functions are more fully
described in the following paragraphs.

XR16C854

16

Rev. 1.0

ADDRESS BUS OPERATION

A2 A1 A0 READ ONLY WRITE ONLY

General Registers are accessible only when LCR is not 0xBF.

0 0 0 Receive Holding Register Transmit Holding Register
0 0 1 Interrupt Enable Register Interrupt Enable Register
0 1 0 Interrupt Status Register FIFO Control Register
0 1 1 Line Control Register Line Control Register
1 0 0 Modem Control Register Modem Control Register
1 0 1 Line Status Registe N.A.
1 1 0 Modem Status Register N.A.
1 1 1 Scratch Pad Register Scratch Pad Register
1 1 1 FIFO Level Counter(see note 1) Enhanced Mode Select Register(see note 1)

Baud Rate Divisor Registers are accessible only when LCR bit-7 is logic 1 and not 0xBF.

0 0 0 LSB of Divisor Latch LSB of Divisor Latch
0 0 1 MSB of Divisor Latch MSB of Divisor Latch

Enhanced Registers are accessible only when LCR is set to 0xBF.

0 0 0 FIFO Level Counter FIFO Trigger Level
0 0 1 Feature Control Register Feature Control Register
0 1 0 Enhanced Feature Register Enhanced Feature Register
1 0 0 Xon-1 Word Xon-1 Word
1 0 1 Xon-2 Word Xon-2 Word
1 1 0 Xoff-1 Word Xoff-1 Word
1 1 1 Xoff-2 Word Xoff-2 Word

Channel A-D FIFO Status Register is accessible only when -FSRS pin is active.

X X X RXRDY A-D and TXRDY A-D N.A.

Note 1: FIFO Level Counter and Enhanced Mode Select Register are accessible only when FTCR bit-6=1. When
FTCR bit-6=0, the Scratchpad Registe is available.

Table 3, Internal Registers Summary

XR16C854

17

Rev. 1.0

Hardware (RTS/CTS) Flow Control Operation

Automatic hardware or RTS and CTS flow control is
used to prevent data overrun to the local receiver FIFO
and remote receiver FIFO. The -RTS output pin is used
to request remote unit to suspend/restart data transmis-
sion while the -CTS input pin is monitored to suspend/
restart local transmitter. The auto RTS and auto CTS
flow control features are individually selected to fit
specific application requirement and enabled through
EFR bit-6 and 7. The auto RTS function must be started
by asserting -RTS pin (MCR bit-1=1 after it is enabled.
The figure below shows how it works.

Two interrupts associated with RTS and CTS flow control
have been added to give indication when -RTS pin or -
CTS pin is de-asserted during operation. The RTS and
CTS interrupts must be first enabled by EFR bit-4, and
then enabled individually by IER bit-6 and 7.

Automatic hardware flow control is selected by setting
bits 6 (RTS) and 7 (CTS) of the EFR register to logic 1.
If CTS# pin transitions from logic 0 to logic 1 indicting
a flow control request, ISR bit-5 will be set to logic 1 (if
enabled via IER bit 6-7), and the UART will suspend TX
transmissions as soon as the stop bit of the character
in process is shifted out. Transmission is resumed after
the -CTS input returns to logic 0, indicating more data
may be sent.

-RTSA -CTSB

R X A T X B
Transmit terRece iver F IFO

Tr igger Reached

Auto RTS
Tr igger Level

Au to CTS
Moni tor

-RTSA

T X B

RXA F IFO

-CTSB

Remote UART
U A R T B

Loca l UART
U A R T A

O N OFF O N

Suspend
Restart

RTS High
Threshold

B
Y

T
E

B
Y

T
E

B
Y

T
E

B
Y

T
E

Starts

B
Y

T
E

C
H

A
R

C
H

A
R

C
H

A
R

C
H

A
R

B
Y

T
E

B
Y

T
E

B
Y

T
E

B
Y

T
E

B
Y

T
E

B
Y

T
E

B
Y

T
E

C
H

A
R

C
H

A
R

C
H

A
R

C
H

A
R

C
H

A
R

C
H

A
R

O N OFF O N

Assert RTS# to Begin Transmission

C
H

A
R

C
H

A
R

B
Y

T
E

C
H

A
R

C
H

A
R

1

2

3

4

5

6

7

Receive Data RTS Low
Threshold

9

10

11

C
H

A
R

Rece iver F IFO
Tr igger Reached

Auto RTS
Tr igger Level

Transmit ter

Au to CTS
Moni tor

-RTSB-CTSA

R X BT X A

INTA
(RXA F IFO
Interrupt)

RX FIFO
Trigger Level

RX FIFO
Trigger Level

8

12

The local UART (UARTA) starts data transfer by asserting -RTSA (1). -RTSA is normally connected to -CTSB (2) of
remote UART (UARTB). -CTSB allows its transmitter to send data (3). TXB data arrives and fills UART-A receive FIFO
(4). When RXA data fills up to its receive FIFO trigger level, UARTA activates its RXA data ready interrupt (5) and
continues to receive and put data into its FIFO. If interrupt service latency is long and data is not being unloaded,
UARTA monitors its receive data fill level to match the upper threshold of RTS delay and de-assert -RTSA (6). -CTSB
follows (7) and request UARTB transmitter to suspend data transer. UART-B stops or finishes sending the data bits in its
transmit shift register (8). When receive FIFO data in UARTA is unloaded to match the lower threshold of RTS delay (9),
UARTA re-assert -RTSA (10) -CTSB recognizes the change (11) and restarts its transmitter and data flow again until
next RX trigger (12). This same event applies tothe reverse direction when UARTA sends data to UARTB with -RTSB
and -CTSA controlling the data flow.

XR16C854

18

Rev. 1.0

The 854 offer programmable receive FIFO level flow
control trigger hysteresis while maintaining compatibil-
ity to ST16C654. The hysteresis level is programmable
from 0x00 to 0x7F to provide the user for best data
throughput optimization.

With the Auto RTS function enabled, -RTS pin will go
to logic 1 turning RTS off when the RX FIFO level has
reached the upper hysteresis limit that is set to be
several bytes of data above the RX FIFO trigger level.
This delay action of suspending remote transmitter
effectively keeps data coming hence increases data
throughput. The -RTS pin will return to a logic 0 setting
RTS on when the RX FIFO level reaches the lower
hysteresis limit. The receiver continues to accept data
until receive FIFO gets completely full. The Auto RTS
function must be started by asserting -RTS pin to logic
0 (RTS On). See EMSR bit 4 and 5 for a complete
programming table for the hysteresis level.

Software Flow Control

When software flow control is enabled, the 854 com-
pares one or two sequential receive data characters
with the programmed Xon or Xoff-1,2 character
value(s). If receive character(s) (RX) match the pro-
grammed values, the 854 will halt transmission (TX) as
soon as the current character(s) has completed trans-
mission. When a match occurs, the receive ready (if
enabled via Xoff IER bit-5) flag will be set and the
interrupt output pin (if receive interrupt is enabled) will
be activated. Following a suspension due to a match of
the Xoff characters values, the 854 will monitor the
receive data stream for a match to the Xon-1,2 charac-
ter value(s). If a match is found, the 854 will resume
operation and clear the flags (ISR bit-4).

The 854 offers a special Xon mode via MCR bit-5. The
initialized default setting of MCR bit-5 is a logic 0. In this
state Xoff and Xon will operate as defined above.
Setting MCR bit-5 to a logic 1 sets a special operational
mode for the Xon function. In this case Xoff operates
normally however, transmission (Xon) will resume with
the next character received, i.e., a match is declared
simply by the receipt of an incoming (RX) character.

Reset initially sets the contents of the Xon/Xoff 8-bit flow
control registers to a logic 0. Following reset the user can

write any Xon/Xoff value desired for software flow
control. Different conditions can be set to detect Xon/
Xoff characters and suspend/resume transmissions.
When double Xon/Xoff characters are selected, the 854
compares two consecutive receive characters with two
software flow control values (Xon1, Xon2, Xoff1, Xoff2)
and controls TX transmissions accordingly. Under the
above described flow control mechanisms, flow control
characters are not placed (stacked) in the user acces-
sible RX data buffer or FIFO.

In the event that the receive buffer is overfilling and flow
control needs to be executed, the 854 automatically
sends an Xoff message (when enabled) via the serial
TX output to the remote modem. The 854 sends the
Xoff-1,2 characters two character times after received
data passes the programmed FIFO trigger level. To clear
this condition, the 854 will transmit the programmed
Xon-1,2 characters as soon as receive data drops
below the next lower programmed trigger level or pro-
grammed RTS hysteresis level.

Special Feature Software Flow Control

A special feature is provided to detect a character when
bit-5 is set in the Enhanced Feature Register (EFR).
When the character is detected, it will be placed on the
user accessible data stack along with normal incoming
RX data. This condition is selected in conjunction with
EFR bits 0-3. Note that software flow control should be
turned off when using this special mode by setting EFR
bit 0-3 to a logic 0.

The 854 compares each incoming receive character
with Xoff-2 data. If a match exists, the received data will
be transferred to FIFO and ISR bit-4 will be set to
indicate detection of special character (see Figure 9).
Although the Internal Register Table shows each X-
Register with eight bits of character information, the
actual number of bits is dependent on the programmed
word length. Line Control Register (LCR) bits 0-1
defines the number of character bits, i.e., either 5 bits,
6 bits, 7 bits, or 8 bits. The word length selected by LCR
bits 0-1 also determines the number of bits that will be
used for the special character comparison. Bit-0 in the
X-registers corresponds with the LSB bit for the receive
character.

XR16C854

19

Rev. 1.0

Xon Any Feature

A special feature is provided to return the Xoff flow
control to the inactive state following its activation. In
this mode any RX character received will return the
Xoff flow control to the inactive state so that transmis-
sions may be resumed with a remote buffer. This
feature is more fully defined in the Software Flow
Control section.

Device Identification

The XR16C854 provides a Device Identification and
Device Revision code to distinguish the part from
others.

To read the identification number from the part, it is
required to set the baud rate generator divisor, LCR bit-
7, to logic 1 and then set the baud rate generator DLL
and DLM registers to 0x00. Now, reading the content
of the DLM will provide 0x14 for XR16C854 part and
reading the content of the DLL will provide the revision
of the part; for example, a reading of 0x01 means
revision A.

FIFO Interrupts, Trigger Levels and Time-out

The 128 byte transmit and receive data FIFO’s are
enabled by the FIFO Control Register (FCR) bit-0. The
receive FIFO is actually 11 bit wide to hold 3 error bits
for each character received. The 854 provides inde-
pendent FIFO interrupt trigger control for both receiver
and transmitter. The transmit and receive trigger levels
are set to 1 following a reset to be compatible to
ST16C554. The user must activate EFR bit-4 to a logic
1 before setting the transmit trigger levels. The receiver
FIFO section includes a receive time-out interrupt
function to ensure data is delivered to the external
processor. This occurs whenever the receive trigger
level has not reached. The time-out delay is about 4
characters period.

Seven interrupts are provided by the UART to indicate
activities in the UART. These interrupts are enabled in
IER register bits 0-7. Following a reset the transmitter
interrupt is disabled. Upon enabling the transmit empty
interrupt, the 854 will issue an interrupt to indicate that
transmit holding register is empty. This interrupt must
be serviced prior to continuing operations. The re-

ceiver provides 2 interrupts for receive data ready and
a receive data time-out function. The receive data
time-out interrupt is caused when the number of data
bytes in the FIFO has not reached the trigger level and
the receiver has been idle (no incoming data, FIFO not
accessed) for about four character period. This ensure
data are passed on to the CPU. The LSR register
provides the current singular highest priority interrupt
only for transmitter and receiver status and errors.
There is the MSR interrupt that indicates the change of
state on the modem input pins. It should be noted that
CTS and RTS interrupts have the lowest interrupt
priority. A condition can exist where a higher priority
interrupt may mask the lower priority CTS/RTS
interrupt(s). Only after servicing the higher pending
interrupt will the lower priority CTS/ RTS interrupt(s) be
reflected in the status register. Servicing the interrupt,
without investigating further interrupt conditions, can
result in data errors.

When two interrupt conditions have the same priority,
it is important to service these interrupts correctly.
Receive data ready and receive time-out have the same
interrupt priority (when enabled by IER bit-0). The
receiver issues an interrupt after the number of char-
acters have reached the programmed trigger level. In
this case, the FIFO may hold more characters than the
programmed trigger level. Following the removal of a
data byte, the user should recheck LSR bit-0 for
additional characters. A receive time-out will not occur
if the receive FIFO is empty. The time out counter is reset
at the center of each stop bit received or each time the
receive holding register (RHR) is read. The actual time
out value is T (Time out length in bits) = 4 X P
(Programmed word length) + 12. To convert the time out
value to a character value, the user has to consider the
complete word length, including data information length,
start bit, parity bit, and the size of stop bit, i.e., 1X, 1.5X,
or 2X bit times.

Example -A:
If the user programs a word length of 7, with no parity
and one stop bit, the time out will be:
T = 4 X 7(programmed word length) +12 = 40 bit times.
The character time will be equal to 40 / 9 = 4.4
characters, or as shown in the fully worked out example:
T = [(programmed word length = 7) + (stop bit = 1) + (start
bit = 1) = 9]. 40 (bit times divided by 9) = 4.4 characters.

XR16C854

20

Rev. 1.0

Figure 4, Crystal oscillator connection

Example -B:
If the user programs the word length = 7, with parity and
one stop bit, the time out will be:
T = 4 X 7 (programmed word length) + 12 = 40 bit times.
Character time = 40 / 10 [(programmed word length =
7) + (parity = 1) + (stop bit = 1) + (start bit = 1)] = 4
characters.
In the 16 mode for 68/100 pin packages, the system/
board designer can optionally provide software con-
trolled three state interrupt operation. This is accom-
plished by INTSEL and MCR bit-3. When INTSEL
interface pin is left open or made a logic 0, MCR bit-3
controls the three state interrupt outputs, INT A-D. When
INTSEL is a logic 1, MCR bit-3 has no effect on the INT
A-D outputs and the package operates with interrupt
outputs enabled continuously.

Programmable Baud Rate Generator (BRG)

The 854 supports high speed modem technologies that
have increased input data rates by employing data
compression schemes typically of 4 to 1 ratio. For
example a 56Kbps modem that employs data compres-
sion may require a 230.42Kbps of DTE input data rate.
A 128.0Kbps ISDN modem that supports data compres-
sion may need an input data rate of 460.8Kbps. The 854
can support a standard data rate of 921.6Kbps.

A single baud rate generator is provided for the trans-
mitter and receiver, allowing independent TX/RX chan-
nel control. The programmable Baud Rate Generator is
capable of accepting a clock up to 24 MHz from the on-
chip oscillator circuit for 1.5 Mbps data rate, or up a 32
MHz external clock on pin XTAL1 for up to 2.0 Mbps
typical data rate. The internal clock oscillator is de-
signed to use an industry standard microprocessor
crystal (parallel resonant with 10-22 pF load) connected
externally between the XTAL1 and XTAL2 pins (see
Figure 4). Alternatively, an external clock can be con-
nected to the XTAL1 pin to clock the internal baud rate
generator for standard or custom rates. (see Baud Rate
Generator Programming and Figure 7 for data rate
performance curves on the AC Characteristics page).

The 854 has a clock prescaler that divides the crystal or
external clock by 1 or 4 . This clock feeds the input of
the BRG. The generator divides this input clock by any
divisor from 1 to 216 -1. Further division of this clock
provides two table rates to support low and high data

rate applications using the same clock frequency. After
a hardware reset, the 854 defaults to a baud data rate
table acccording to the state of the CLKSEL. pin. A logic
1 on CLKSEL will set the 1X (divide by 1) clock table,
whereas, a logic 0 will set the 4X (divide by 4) clock
table. Following the baud clock rate selection during
initialization, the rate tables can be changed by the
internal register, MCR bit-7. Setting MCR bit-7 to a logic
1 when CLKSEL is a logic 1 provides an additional divide
by 4 whereas, setting MCR bit-7 to a logic 0 only divides
by 1. (See Table 4 and Figure 5). Customized Baud
Rates can be achieved by selecting the proper divisor
values for the MSB and LSB sections of baud rate
generator.

Programming the Baud Rate Generator Registers
DLM (MSB) and DLL (LSB) provides a user capability
for selecting the desired final baud rate. The example
in Table 4 below, shows the two selectable baud rate
tables available when using a 7.3728 MHz crystal.

C1
22-47pF

C2
22-47pF

X1
7.3728 MHz

X
T

A
L1

X
T

A
L2

XR16C854

21

Rev. 1.0

Output Output User User DLM DLL
Baud Rate Baud Rate 16 x Clock 16 x Clock Program Program

MCR MCR Divisor Divisor Value Value
BIT-7=1 Bit-7=0 (Decimal) (HEX) (HEX) (HEX)

50 200 2304 900 09 00
300 1200 384 180 01 80
600 2400 192 C0 00 C0
1200 4800 96 60 00 60
2400 9600 48 30 00 30
4800 19.2K 24 18 00 18
9600 38.4k 12 0C 00 0C
19.2k 76.8k 6 06 00 06
38.4k 153.6k 3 03 00 03
57.6k 230.4k 2 02 00 02
115.2k 460.8k 1 01 00 01

Table 4, Baud Rate Generator Programming Table with a 7.3728 MHz Crystal or External Clock

Figure 5, Baud Rate Generator Circuitry

Divide by
1 logic

X T A L 1

X T A L 2

Clock
Osci l lator

Baudrate
Generator

Logic

16X Bi t Clock
to Transmit ter
and Receiver
(- B A U D O U T)

*MCR Bi t -7=0
(default)

MCR B i t -7=1

DLM and DLL Regis ters

Div ide by
4 logic

*Note: Af ter power up or reset , the select ion made by CLKSEL pin may be overr iden wi th MCR bi t -7.

XR16C854

22

Rev. 1.0

DMA Operation

The 854 FIFO trigger level provides additional flexibility
to the user for block mode operation. LSR bits 5-6
provide an indication when the transmitter is empty or
has an empty location(s). The user can optionally
operate the transmit and receive FIFO’s in the DMA
mode (FCR bit-3). When the transmit and receive
FIFO’s are enabled and the DMA mode is deactivated
(DMA Mode “0”), the 854 activates the interrupt output
pin for each data transmit or receive operation. When
DMA mode is activated (DMA Mode “1”), the user takes
the advantage of block mode operation by loading or
unloading the FIFO in a block sequence determined by
the preset trigger level. In this mode, the 854 sets the
interrupt output pin when characters in the transmit
FIFO’s are below the transmit trigger level, or the
characters in the receive FIFO’s are above the receive
trigger level.

Sleep Mode

The 854 is designed to operate with low power consump-
tion. A special sleep mode is included to further reduce
power consumption when the chip is not being used.
With EFR bit-4 and IER bit-4 enabled (set to a logic 1),
the 854 enters the sleep mode but resumes normal
operation when a start bit is detected, a change of state
on any of the modem input pins RX, -RI, -CTS, -DSR,
-CD, or transmit data is provided by the user. If the sleep
mode is enabled and the 854 is awakened by one of the
conditions described above, it will return to the sleep
mode automatically after the last character is transmit-
ted or read by the user. In any case, the sleep mode will
not be entered while an interrupt(s) is pending. The 854
will stay in the sleep mode of operation until it is disabled
by setting IER bit-4 to a logic 0.

Loopback Mode

The internal loopback capability allows onboard diag-
nostics. In the loopback mode the normal modem
interface pins are disconnected and re-configured for
loopback internally. MCR register bits 0-3 are used for
controlling loopback diagnostic testing. In the loopback
mode OP1 and OP2 in the MCR register (bits 3/2)
control the modem -RI and -CD inputs respectively.
MCR signals -DTR and -RTS (bits 0-1) are used to
control the modem -CTS and -DSR inputs respectively.

The transmitter output (TX) and the receiver input (RX)
are disconnected from their associated interface pins,
and instead are connected together internally (See
Figure 6). The -CTS, -DSR, -CD, and -RI are discon-
nected from their normal modem control inputs pins, and
instead are connected internally to -DTR, -RTS, -OP1
and -OP2. Loopback test data is entered into the
transmit holding register via the user data bus interface,
D0-D7. The transmit UART serializes the data and
passes the serial data to the receive UART via the
internal loopback connection. The receive UART con-
verts the serial data back into parallel data that is then
made available at the user data interface, D0-D7. The
user optionally compares the received data to the initial
transmitted data for verifying error free operation of the
UART TX/RX circuits.

In this mode, the receiver and transmitter interrupts are
fully operational. The Modem Control Interrupts are also
operational. However, the interrupts can only be read
using lower four bits of the Modem Control Register
(MCR bits 0-3) instead of the four Modem Status
Register bits 4-7. The interrupts are still controlled by the
IER.

XR16C854

23

Rev. 1.0

Figure 6, Internal Loop Back Mode Diagram, shown for channel A/B/C/D.

D 0 - D 7

- IOR,- I O W

R E S E T

A0-A2
-CS A-D

INT A -D

- R X R D Y

- T X R D Y

TX A -D

R X A - D

D
at

a
bu

s
&

C
on

tr
ol

 L
og

ic

R
eg

is
te

r
S

el
ec

t
Lo

gi
c

M
od

em
 C

on
tr

ol
 L

og
ic

In
te

rr
up

t
C

on
tr

ol
Lo

gi
c
T ransmi t

F I F O
Registers

F low
Cont ro l
Log ic

Transmi t
Shi f t

Register

Receive
F I F O

Registers

F low
Cont ro l
Log ic

Receive
Shif t

Register

In
te

r
C

on
ne

ct
 B

us
 L

in
es

&
C

on
tr

ol
 s

ig
na

ls

C
lo

ck
&

B
au

d
R

at
e

G
en

er
at

or

X T A L 1

X T A L 2

Ir
Encoder

I r
Decoder

-CTS A-D

-RTS A-D

-DTR A -D

-DSR A -D

-RI A-D

-CD A -D

-OP1 A-D

-OP2 A-D

M
C

R
 B

it-
4=

1

V C C

V C C

V C C

V C C

V C C

16/-68

XR16C854

24

Rev. 1.0

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678
12345678
12345678
12345678
12345678

123456789012
123456789012
123456789012
123456789012

Internal Registers Descriptions

The following table delineates the assigned bit functions for the 854 internal registers. The assigned bit func-
tions are more fully defined in the following paragraphs.

Bus Address Register BIT-7 BIT-6 BIT-5 BIT-4 BIT-3 BIT-2 BIT-1 BIT-0
Read or A2 A1 A0 [Default]
Write Note *2

General Registers are accessible only when LCR bit-7 is not 0xBF.
Shaded bits are available only when they are enabled by EFR bit-4.

Read 0 0 0 RHR [XX] Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

Write 0 0 0 THR [XX] Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

Read / 0 0 1 IER [00] 0/ 0/ 0/ 0/ Modem Receive Transmit Receive
Write -CTS -RTS Xoff Sleep status line holding holding

interrupt interrupt interrupt mode interrupt status register register
interrupt

Write 0 1 0 FCR [00] RCVR RCVR 0/TX 0/TX DMA XMIT RCVR FIFO
trigger trigger trigger trigger mode FIFO FIFO enable
(MSB) (LSB) (MSB) (LSB) select reset reset

Read 0 1 0 ISR [01] 0/ 0/ 0/Int 0/Int Int Int Int Int
FIFOs FIFOs Status Status Status Status Status status

enabled enabled Bit-5 Bit-4. Bit-3 Bit-2 Bit-1 Bit-0

Read / 0 1 1 LCR [00] BRG Set Set Even Parity Stop Word Word
Write Prescaler Break parity parity enable bits length length

enable bit-1 bit-0

Read / 1 0 0 MCR [00] Clock 0/ 0/ Loop (-OP2) (-OP1) -RTS -DTR
Write select IRRT Xon back 3-state

enable Any INT

Read 1 0 1 LSR [60] 0/ TSR THR RX RX Framing RX Parity RX Overrun Receive
FIFO empty empty Break error error error data
error ready

Read 1 1 0 MSR [00] -CD -RI -DSR -CTS Delta Delta Delta Delta
-CD -RI -DSR -CTS

Read / 1 1 1 SPR [FF] Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
Write
Read 1 1 1 FLVL [00] Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0

(note 3)

Write 1 1 1 EMSR [00] Reserved Reserved RTS Hyst RTS Hyst Reserved Reserved FIFO Count FIFO Count
(note 3) bit-5 bit-4 bit-1 bit-0

Baud Rate Gen. Registers are accessible only when LCR bit-7 is set to logic 1 and not 0xBF.

Read / 0 0 0 DLL [00] Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
Write

Read / 0 0 1 DLM [00] Bit-15 Bit-14 Bit-13 Bit-12 Bit-11 Bit-10 Bit-9 Bit-8
Write

XR16C854

25

Rev. 1.0

Internal Registers Descriptions continues

Bus Address Register BIT-7 BIT-6 BIT-5 BIT-4 BIT-3 BIT-2 BIT-1 BIT-0
Read or A2 A1 A0 [Default]
Write Note *2

Enhanced Registers are accessible only when LCR register is 0xBF.

Read / 0 0 0 TRG [00] Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
Write

Read / 0 0 1 FCTR [00] Rx/Tx SPR Trig Table Trig Table Auto IrRx RTS RTS
Write Mode Swap Bit-1 Bit-0 RS485 Inv. Hyst Hyst

control Bit-1 Bit-0

Read / 0 1 0 EFR [00] Auto Auto Special Enable Cont-3 Cont-2 Cont-1 Cont-0
Write -CTS -RTS Char. IER Tx,Rx Tx,Rx Tx,Rx Tx,Rx

select Bits 4-7, Control Control Control Control
ISR, FCR
Bits 4-5,

MCR
Bits 5-7

Read / 1 0 0 Xon-1 [00] Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
Write 1 0 1 Xon-2 [00] Bit-15 Bit-14 Bit-13 Bit-12 Bit-11 Bit-10 Bit-9 Bit-8

1 1 0 Xoff-1 [00] Bit-7 Bit-6 Bit-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0
1 1 1 Xoff-2 [00] Bit-15 Bit-14 Bit-13 Bit-12 Bit-11 Bit-10 Bit-9 Bit-8

FIFO Status Register is only selected by the -FSRS pin, no A0-A2 address lines required.

Read X X X FSTAT RXRDY-D RXRDY-C RXRDY-B RXRDY-A TXRDY-D TXRDY-C TXRDY-B TXRDY-A
only Ready Ready Ready Ready Ready Ready Ready Ready

Note 2: The value between the square brackets represents the register’s initialized HEX value.
Note 3: The FLVL and EMSR registers are only accessible when FTCR register bit-6 is set to logic 1, in this
 case, SPR register would not be available.

XR16C854

26

Rev. 1.0

Transmit (THR) and Receive (RHR) Holding Regis-
ters

The serial transmitter section consists of an 8-bit
Transmit Hold Register (THR) and Transmit Shift Reg-
ister (TSR). The status of the THR is provided in the Line
Status Register (LSR). Writing to the THR transfers the
contents of the data bus (D7-D0) to the THR. The THR
empty flag in the LSR register will be set to a logic 1
when the last character in the THR is transferred to the
TSR. LSR bit-6 will be set when the last character has
been shifted out of TSR.

The serial receive section also contains an 8-bit Receive
Holding Register, RHR. Receive data is removed from
the 854 and receive FIFO by reading the RHR register.
The receive section provides a mechanism to prevent
false starts. On the falling edge of a start or false start
bit, an internal receiver counter starts counting clocks
at 16x clock rate. After 7 1/2 clocks the start bit time
should be shifted to the center of the start bit. At this time
the start bit is sampled and if it is still a logic 0 it is
validated. Evaluating the start bit in this manner prevents
the receiver from assembling a false character. Re-
ceiver status codes will be posted in the LSR.

Interrupt Enable Register (IER)

The Interrupt Enable Register (IER) masks the inter-
rupts from receiver ready, transmitter empty, line sta-
tus and modem status registers. These interrupts
would normally be seen on the INT A-D output pins in
the 16 mode, or on WIRE-OR'ed IRQ output pin, in the
68 mode.

IER versus Receive FIFO Interrupt Mode Operation

When the receive FIFO (FCR BIT-0 = a logic 1) and
receive interrupts (IER BIT-0 = logic 1) are enabled, the
receive interrupts and register status will reflect the
following:

A) The receive data available interrupts are issued to
the external CPU when the FIFO has reached the
programmed trigger level. It will be cleared when the
FIFO drops below the programmed trigger level.

B) FIFO status will also be reflected in the user acces-
sible ISR register when the FIFO trigger level is reached.

Both the ISR register status bit and the interrupt will be
cleared when the FIFO drops below the trigger level.

C) The data ready bit (LSR BIT-0) is set as soon as a
character is transferred from the shift register to the
receive FIFO. It is reset when the FIFO is empty.

IER versus Receive/Transmit FIFO Polled Mode Op-
eration

When FCR BIT-0 equals a logic 1; resetting IER bits 0-
3 enables the 854 in the FIFO polled mode of opera-
tion. Since the receiver and transmitter have separate
bits in the LSR either or both can be used in the polled
mode by selecting respective transmit or receive con-
trol bit(s).

A) LSR BIT-0 indicates there is data in RHR/RX FIFO.

B) LSR BIT 1-4 provides the type of receive data errors
encountered, if any.

C) LSR BIT-5 indicates when THR empty.

D) LSR BIT-6 indicates when both the transmit FIFO and
TSR are empty.

E) LSR BIT-7 indicates the sum of errors in the RX FIFO.

IER BIT-0: RHR Interrupt Enable
This interrupt will be issued when RHR is full or when
receive data in the receive FIFO have reached the
programmed trigger level and operating in DMA mode 1.
Logic 0 = Disable the receiver ready interrupt. (normal
default condition)
Logic 1 = Enable the receiver ready interrupt.

IER BIT-1: THR Interrupt Enable
This interrupt is associated with bit-5 in the LSR register.
An interrupt is issued whenever the THR becomes
empty or when data in the FIFO falls below the pro-
grammed trigger level and operating in DMA mode 1.
Logic 0 = Disable the transmitter empty or not full
interrupt. (normal default condition)
Logic 1 = Enable the transmitter empty or not full
interrupt.

IER BIT-2: Receive Line Status Interrupt Enable
Any of the LSR register bits 1,2,3 or 4 becomes active

XR16C854

27

Rev. 1.0

will generate an interrupt to inform the host controller
about the error status of the current data byte in FIFO.
Logic 0 = Disable the receiver line status interrupt.
(normal default condition)
Logic 1 = Enable the receiver line status interrupt.

IER BIT-3: Modem Status Interrupt Enable
Logic 0 = Disable the modem status register interrupt.
(normal default condition)
Logic 1 = Enable the modem status register interrupt.

IER BIT -4: Sleep Mode Enable (requires EFR bit-4 =1)
Logic 0 = Disable sleep mode. (normal default condi-
tion)
Logic 1 = Enable sleep mode. See Sleep Mode section
for details.

IER BIT-5: Xoff Interrupt Enable (requires EFR bit-
4=1)
Logic 0 = Disable the software flow control, receive
Xoff interrupt. (normal default condition)
Logic 1 = Enable the software flow control, receive Xoff
interrupt. See Software Flow Control section for de-
tails.

IER BIT-6: -RTS Output Interrupt Enable (requires EFR
bit-4=1)
Logic 0 = Disable the RTS interrupt. (normal default
condition)
Logic 1 = Enable the RTS interrupt. The 854 issues an
interrupt when the RTS pin transitions from a logic 0 to
a logic 1.

IER BIT-7: -CTS Input Interrupt Enable (requires EFR
bit-4=1)
Logic 0 = Disable the CTS interrupt. (normal default
condition)
Logic 1 = Enable the CTS interrupt. The 854 issues an
interrupt when CTS pin transitions from a logic 0 to a
logic 1.

FIFO Control Register (FCR)

This register is used to enable the FIFO’s, clear the
FIFO’s, set the transmit/receive FIFO trigger levels, and
select the DMA mode. The DMA, and FIFO modes are
defined as follows:

DMA MODE
Mode 0 Set the interrupt for each character trans-

mit or receive operation, and is similar to the ST16C454
mode. Transmit Ready (-TXRDY) will go to a logic 0
whenever the Transmit Holding Register (THR) be-
comes empty. Receive Ready (-RXRDY) will go to a
logic 0 whenever the Receive Holding Register (RHR)
has a character.

Mode 1 Set the interrupt to the FIFO trigger level for
data block transfer. The transmit interrupt is set when the
transmit FIFO falls below the programmed trigger level.
-TXRDY remains at logic 0 as long as there is one empty
location. The receive interrupt is set when the receive
FIFO fills up to the programmed trigger level. However
the FIFO continues to fill regardless of the programmed
level until the FIFO gets completely full. -RXRDY re-
mains at logic 0 as long as the FIFO fill level is above the
programmed trigger level. RXRDY time-out still gener-
ates an interrupt whenever data does not reaches the
trigger level. Also, if the host does not load data into the
TX FIFO up to the programmed trigger level, it will
generates an empty interrupt when becoming empty.

FCR BIT-0: TX and RX FIFO Enable
Logic 0 = Disable the transmit and receive FIFO.
(normal default condition)
Logic 1 = Enable the transmit and receive FIFO. This
bit must be set to logic 1 when other FCR bits are written
or they will not be programmed.

FCR BIT-1: RX FIFO Reset
This bit is only active when FCR bit-0 is active.
Logic 0 = No FIFO receive reset. (normal default
condition)
Logic 1 = Reset the receive FIFO pointers and FIFO
counter logic (the receive shift register is not cleared or
altered). This bit will return to a logic 0 after resetting the
FIFO.

FCR BIT-2: TX FIFO Reset
This bit is only active when FCR bit-0 is active.
Logic 0 = No FIFO transmit reset. (normal default
condition)
Logic 1 = Reset the transmit FIFO pointers and FIFO
counter logic (the transmit shift register is not cleared
or altered). This bit will return to a logic 0 after resetting
the FIFO.

XR16C854

28

Rev. 1.0

FCR BIT-3: DMA Mode Select
Logic 0 = Set DMA mode “0”. (normal default condition)
Logic 1 = Set DMA mode “1.”

Transmit operation in mode “0”:
When the 854 is in the ST16C450 mode (FIFO’s
disabled, FCR bit-0 = logic 0) or in the FIFO mode
(FIFO’s enabled, FCR bit-0 = logic 1, FCR bit-3 = logic
0) and when there are no characters in the transmit
FIFO or transmit holding register, the -TXRDY pin will
be a logic 0. Once active the -TXRDY pin will go to a
logic 1 after the first character is loaded into the
transmit holding register.

Receive operation in mode “0”:
When the 854 is in mode “0” (FCR bit-0 = logic 0) or in
the FIFO mode (FCR bit-0 = logic 1, FCR bit-3 = logic
0) and there is at least one character in the receive
FIFO, the -RXRDY pin will be a logic 0. Once active the
-RXRDY pin will go to a logic 1 when there are no more
characters in the receiver.

Transmit operation in mode “1”:
When the 854 is in FIFO mode (FCR bit-0 = logic 1,
FCR bit-3 = logic 1), the -TXRDY pin will be a logic 1
when the transmit FIFO is completely full. It will be a
logic 0 if one or more FIFO locations are empty.

Receive operation in mode “1”:
When the 854 is in FIFO mode (FCR bit-0 = logic 1,
FCR bit-3 = logic 1) and the trigger level has been
reached, or a Receive Time Out has occurred, the
-RXRDY pin will go to a logic 0. Once activated, it will go
to a logic 1 after there are no more characters in the
FIFO.

FCR BIT 4-5: TX Trigger Select
(logic 0 or cleared is the default condition, TX trigger
level = none)
The FCTR Bits 4-5 are associated with these 2 bits by
selecting one of the four tables. Four user selectable
trigger levels in 4 tables are supported for compatibility
reasons. These bits set the trigger level for the transmit
FIFO interrupt. The 854 will issue a transmit empty
interrupt when the number of characters in the FIFO falls
below the selected trigger level, or when it gets empty
in case that the FIFO did not get filled over the trigger
level.

Transmit Trigger Table-A
Default setting after reset. Compatible to
ST16C550 and ST16C554.

BIT-5 BIT-4 FIFO trigger level

X X Zero (default)

Transmit Trigger Table-B
Compatible to ST16C650A

BIT-5 BIT-4 FIFO trigger level

0 0 16
0 1 8
1 0 24
1 1 30

Transmit Trigger Table-C
Compatible to ST16C654

BIT-5 BIT-4 FIFO trigger level

0 0 8
0 1 16
1 0 32
1 1 56

Transmit Trigger Table-D
Compatible to XR16C850, XR16C2850/2852

BIT-5 BIT-4 FIFO trigger level

X X User programmable
Trigger levels

FCR BIT 6-7: (logic 0 or cleared is the default condition,
RX trigger level =8)
These bits are used to set the trigger level for the
receiver FIFO interrupt. The FCTR Bits 4-5 selects one
of the following table.

XR16C854

29

Rev. 1.0

Receive Trigger Table-A
Default setting after reset. Compatible to ST16C550
and ST16C554

BIT-7 BIT-6 FIFO trigger level

0 0 1 (default)
0 1 4
1 0 8
1 1 14

Receive Trigger Table-B
Compatible to ST16C650A

BIT-7 BIT-6 FIFO trigger level

0 0 8
0 1 16
1 0 24
1 1 28

Receive Trigger Table-C
Compatible to ST16C654

BIT-7 BIT-6 FIFO trigger level

0 0 8
0 1 16
1 0 56
1 1 60

Receive Trigger Table--D
Compatible to XR16C850 and XR16C2850/2852

BIT-7 BIT-6 FIFO trigger level

X X User programmable
Trigger levels

Interrupt Status Register (ISR)

The 854 provides multiple levels of prioritized interrupts
to minimize external software interaction. The Interrupt
Status Register (ISR) provides the user with six interrupt
status bits. Performing a read cycle on the ISR will give
the user the highest pending interrupt level to be
serviced, others are queue up for next service. No other
interrupts are acknowledged until the pending interrupt
is serviced. Whenever the interrupt status register is
read, the interrupt status is cleared. However, it should
be noted that only the current pending interrupt is
cleared by the read. A lower level interrupt may be seen
after re-reading the interrupt status bits. The Interrupt
Source Table, Table 5, shows the data values (bit 0-5)
for the six prioritized interrupt levels and the interrupt
sources associated with each of these interrupt levels.

Interrupt generation:
- LSR is by any of the LSR bits 1, 2, 3 and 4.
- RXRDY is by LSR bit-0.
- RXRDY Time-out is by the 4-char delay timer.
- TXRDY is by LSR bit-5 (or bit-6 in auto RS485 control).
- MSR is by any of the MSR bits, 0, 1, 2 and 3.
- Receive Xoff/Special char. is by the detection of a
 Xoff or Special character.
- CTS is by the change of state on the input pin, and
 RTS is when auto RTS flow control is enabled and the
 receiver changes the state of the output pin.

Interrupt clearing:
- LSR interrupt is cleared by a read to the LSR register.
- RXRDY and RXRDY time out are cleared by a read
 to the LSR register.
- TXRDY interrupt is cleared by a read to the ISR
 register.
- MSR interrupt is cleared by a read to the MSR
 register.
- Xoff or Special character interrupt is cleared by a
 read to the ISR register.
- RTS and CTS status change interrupts are cleared
 by a read to the MSR register.

XR16C854

30

Rev. 1.0

LCR BIT 0-1: TX and RX Word Length Select
These two bits specify the word length to be transmitted
or received.

BIT-1 BIT-0 Word length

0 0 5 (default)
0 1 6
1 0 7
1 1 8

LCR BIT-2: TX and RX Stop-bit Length Select
The length of stop bit is specified by this bit in conjunc-
tion with the programmed word length.

BIT-2 Word length Stop bit
length

(Bit time(s))

0 5,6,7,8 1 (default)
1 5 1-1/2
1 6,7,8 2

LCR BIT-3: TX and RX Parity Select
Parity or no parity can be selected via this bit.
Logic 0 = No parity.
Logic 1 = A parity bit is generated during the transmis-
sion while the receiver checks for parity error of the data
byte received.

Priority [ISR Register Status Bits]
Level B it-5 Bit-4 Bit-3 Bit-2 Bit-1 Bit-0 Source of the interrupt

1 0 0 0 1 1 0 LSR (Receiver Line Status Register)
2 0 0 0 1 0 0 RXRDY (Received Data Ready)
2 0 0 1 1 0 0 RXRDY (Receive Data time out)
3 0 0 0 0 1 0 TXRDY (Transmitter Holding Register Empty)
4 0 0 0 0 0 0 MSR (Modem Status Register)
5 0 1 0 0 0 0 RXRDY (Received Xoff signal)/Special character
6 1 0 0 0 0 0 CTS, RTS change of state
X 0 0 0 0 0 1 None (default)

Table 5, Interrupt Source Table.

ISR BIT-0: Interrupt Status
Logic 0 = An interrupt is pending and the ISR contents
may be used as a pointer to the appropriate interrupt
service routine.
Logic 1 = No interrupt pending. (default condition)

ISR BIT 1-3: Interrupt Status
These bits indicate the source for a pending interrupt at
interrupt priority levels 1, 2, and 3 (See Interrupt Source
Table).

ISR BIT 4-5: Interrupt Status
These bits are enabled when EFR bit-4 is set to a logic
1. ISR bit-4 indicates that matching Xoff character(s)
have been detected. Note that once set to a logic 1, the
ISR bit-4 will stay a logic 1 until a Xon character is
received. ISR bit-5 indicates that CTS or RTS has
changed state.

ISR BIT 6-7: FIFO Enable Status
These bits are set to a logic 0 when the FIFO's are
disabled. They are set to a logic 1 when the FIFO’s are
enabled.

Line Control Register (LCR)

The Line Control Register is used to specify the asyn-
chronous data communication format. The word length,
the number of stop bits, and the parity are selected by
writing the appropriate bits in this register.

XR16C854

31

Rev. 1.0

LCR BIT-4: TX and RX Parity Select
If the parity bit is enabled with LCR bit-3 set to a logic
1, LCR BIT-4 selects the even or odd parity format. Logic
0 = ODD Parity is generated by forcing an odd number
of logic 1’s in the transmitted data. The receiver must be
programmed to check the same format. (normal default
condition)
Logic 1 = EVEN Parity is generated by forcing an even
the number of logic 1’s in the transmitted. The receiver
must be programmed to check the same format.

LCR BIT-5: TX and RX Parity Select
If the parity bit is enabled, LCR BIT-5 selects the forced
parity format.
LCR BIT-5 = logic 0, parity is not forced. (normal default
condition)
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 0, parity bit
is forced to a logical 1 for the transmit and receive data.
LCR BIT-5 = logic 1 and LCR BIT-4 = logic 1, parity bit
is forced to a logical 0 for the transmit and receive data.

LCR LCR LCR Parity selection
Bit-5 Bit-4 Bit-3

X X 0 No parity
0 0 1 Odd parity
0 1 1 Even parity
1 0 1 Force parity “1”
1 1 1 Forced parity “0”

LCR BIT-6: Transmit Break Enable
When enabled the Break control bit causes a break
condition to be transmitted (the TX output is forced to
a logic 0 state). This condition exists until disabled by
setting LCR bit-6 to a logic 0.
Logic 0 = No TX break condition. (normal default
condition)
Logic 1 = Forces the transmitter output (TX) to a logic
0 for alerting the remote receiver to a line break
condition.

LCR BIT-7: Baud Rate Divisors Enable
The internal baud rate counter latch and Enhance
Feature mode enable.
Logic 0 = Divisor latch disabled. (normal default condi-
tion)
Logic 1 = Divisor latch and enhanced feature register
enabled.

Modem Control Register (MCR)

This register controls the interface with the modem or
a peripheral device.

MCR BIT-0: -DTR Pins Control
Logic 0 = Force -DTR output to a logic 1. (normal
default condition)
Logic 1 = Force -DTR output to a logic 0.

MCR BIT-1: -RTS Pins Control
Logic 0 = Force -RTS output to a logic 1. (normal
default condition)
Logic 1 = Force -RTS output to a logic 0.
Automatic RTS may be used for hardware flow control
by enabling EFR bit-6 (See EFR bit-6).

MCR BIT-2:
The -OP1 output pin is not available in the 854.
This bit is used in the loopback mode only. In the
loopback mode this bit is use to write the state of the
modem -RI interface signal via -OP1.

MCR BIT-3: Interrupt A-D Output Select
The -OP2 output pin is not available in the 854.
Select interrupt INT A-D outputs to operate in continu-
ous or three-state mode. This function is associated
with the INTSEL input, see below table for details. This
bit is also used to control the -CD signal during loopback
mode.
Logic 0 = Forces INT A-D outputs to the three state
operation in the 16 mode. (normal default condition).
During loopback mode, it sets -OP2 (-CD) internally to
a logic 1.
Logic 1 = Forces the INT A-D outputs to continuous
operation in the 16 mode. During loopback mode, it sets
-OP2 (-CD) internally to a logic 0.

 INTSEL INT A-D Outputs in 16 Mode
 Pin*

 = 1 Continuous

 = 0 if MCR bit-3=0, then it's three-state
if MCR bit-3=1, then it's continuous

*INTSEL must be set to logic zero for 68 mode.

XR16C854

32

Rev. 1.0

MCR BIT-4: Internal Loopback Enable
Logic 0 = Disable loopback mode. (normal default
condition)
Logic 1 = Enable local loopback mode, see loopback
section and figure 6.

MCR BIT-5: Xon-Any Enable
Logic 0 = Disable Xon-Any function (for 16C550
compatibility). (normal default condition)
Logic 1 = Enable Xon-Any function. In this mode any
RX character received will enable Xon.

MCR BIT-6: Infrared Encoder/Decoder Enable
Logic 0 = Enable the standard modem receive and
transmit input/output interface. (normal default condi-
tion)
Logic 1 = Enable infrared IrDA receive and transmit
inputs/outputs. While in this mode, the TX/RX output/
Inputs are routed to the infrared encoder/decoder. The
data input and output levels will conform to the IrDA
infrared interface requirement. As such, while in this
mode the infrared TX output will be a logic 0 during idle
data conditions.

MCR BIT-7: Clock Prescaler Select
Logic 0 = Divide by one. The input clock from the crystal
or external clock is fed directly to the Programmable
Baud Rate Generator (BRG) without further modifica-
tion, i.e., divide by one. (normal, default condition)
Logic 1 = Divide by four. The prescaler divides the input
clock from the crystal or external clock by four and feeds
it to the Programmable Baud Rate Generator.

Line Status Register (LSR)

This register provides the status of data transfers
between the 854 and the CPU.

LSR BIT-0: Receive Data Ready Indicator
Logic 0 = No data in receive holding register or FIFO.
(normal default condition)
Logic 1 = Data has been received and is saved in the
receive holding register or FIFO.

LSR BIT-1: Receiver Overrun Flag
Logic 0 = No overrun error. (normal default condition)
Logic 1 = Overrun error. A data overrun error occurred
in the receive shift register. This happens when addi-
tional data arrives while the FIFO is full. In this case the

previous data in the shift register is overwritten. Note
that under this condition the data byte in the receive
shift register is not transferred into the FIFO, therefore
the data in the FIFO is not corrupted by the error.

LSR BIT-2: Receive Data Parity Error Flag
Logic 0 = No parity error. (normal default condition)
Logic 1 = Parity error. The receive character does not
have correct parity information and is suspect. In the
FIFO mode, this error is associated with the character
at the top of the FIFO.

LSR BIT-3: Receive Data Framing Error Flag
Logic 0 = No framing error. (normal default condition)
Logic 1 = Framing error. The receive character did not
have a valid stop bit(s). In the FIFO mode this error is
associated with the character at the top of the FIFO.

LSR BIT-4: Receive Break Flag
Logic 0 = No break condition. (normal default condi-
tion)
Logic 1 = The receiver received a break signal (RX was
a logic 0 for one character frame time). In the FIFO
mode, only one break character is loaded into the
FIFO.

LSR BIT-5: Transmit Holding Register Empty Flag
This bit is the Transmit Holding Register Empty indica-
tor. This bit indicates that the transmitter is ready to
accept a new character for transmission. In addition,
this bit causes the UART to issue an interrupt to CPU
when the THR interrupt enable is set. The THR bit is set
to a logic 1 when the last data byte is transferred from
the transmit holding register to the transmit shift register.
The bit is reset to logic 0 concurrently with the data
loading to the transmit holding register by the CPU. In
the FIFO mode this bit is set when the transmit FIFO is
empty; it is cleared when at least 1 byte is written to the
transmit FIFO.

LSR BIT-6: Transmit Shift Register Empty Flag
This bit is the Transmit Shift Register Empty indicator.
This bit is set to a logic 1 whenever the transmitter goes
idle. It is reset to logic 0 whenever either the THR or TSR
contains a data character. In the FIFO mode this bit is
set to one whenever the transmit FIFO and transmit shift
register are both empty.

LSR BIT-7: Receive FIFO Data Error Flag

XR16C854

33

Rev. 1.0

Logic 0 = No FIFO error. (normal default condition)
Logic 1 = An indicator for the sum of all error bits in the
RX FIFO. At least one parity error, framing error or
break indication is in the FIFO data. This bit clears when
there is no more error in the FIFO.

Modem Status Register (MSR)

This register provides the current state of the control
interface signals from the modem, or other peripheral
device that the 854 is connected to. Four bits of this
register are used to indicate the changed information.
These bits are set to a logic 1 whenever a control input
from the modem changes state. These bits are set to a
logic 0 whenever the CPU reads this register.

MSR BIT-0: Delta -CTS Input Flag
Logic 0 = No -CTS Change (normal default condition)
Logic 1 = The -CTS input to the 854 has changed state
since the last time it was read. A Modem Status Interrupt
will be generated.

MSR BIT-1: Delta -DSR Input Flag
Logic 0 = No -DSR Change. (normal default condition)
Logic 1 = The -DSR input to the 854 has changed state
since the last time it was read. A modem Status Interrupt
will be generated.

MSR BIT-2: Delta -RI Input Flag
Logic 0 = No -RI Change. (normal default condition)
Logic 1 = The -RI input to the 854 has changed from a
logic 0 to a logic 1. A modem Status Interrupt will be
generated.

MSR BIT-3: Delta -CD Input Flag
Logic 0 = No -CD Change. (normal default condition)
Logic 1 = Indicates that the -CD input to the has changed
state since the last time it was read. A modem Status
Interrupt will be generated.

MSR BIT-4: CTS Input Status
-CTS functions as hardware flow control signal input if
it is enabled by EFR bit-7. Auto -CTS flow control (when
enabled) allows the starting and stopping the transmis-
sions based on the external modem -CTS signal. A logic
1 at the -CTS pin will stop 854 transmissions as soon as
current character has finished transmission.

Normally MSR bit-4 bit is the compliment of the -CTS

input. However in the loopback mode, this bit is equiva-
lent to the RTS bit in the MCR register.

MSR BIT-5: DSR Input Status
DSR (active high, logical 1). Normally this bit is the
compliment of the -DSR input. In the loopback mode,
this bit is equivalent to the DTR bit in the MCR register.

MSR BIT-6: RI Input Status
RI (active high, logical 1). Normally this bit is the
compliment of the -RI input. In the loopback mode this
bit is equivalent to the OP1 bit in the MCR register.

MSR BIT-7: CD Input Status
CD (active high, logical 1). Normally this bit is the
compliment of the -CD input. In the loopback mode this
bit is equivalent to the OP2 bit in the MCR register.

Scratch Pad Register (SPR)

This is a temporary data register for user data. The SPR
is set to 0xFF after power up and upon a reset. Also, see
FCTR bit-6 for additional functions detail associated
with registers FLVL and EMSR.

Baud Rate Divisor Registers (DLL and DLM)

The Baud Rate Generator (BRG) is a 16-bit counter that
generates the data rate for the transmitter and receiver.
The rate is programmed through registers DLL and DLM
which are only accessible when LCR bit-7 is set to logic
1 and not 0xBF. See Table 4 for programming selection.

Enhanced Feature Register (EFR)

Enhanced features are enabled or disabled using this
register. Bit 0-3 provide single or dual consecutive
character software flow control selection (see Table 6).
When the Xon1 and Xon2 and/or Xoff1 and Xoff2
modes are selected, the double 8-bit words are concat-
enated into two sequential characters. Please note that
whenever changing the TX or RX flow control bits,
always reset all bits back to logic 0 (disable) before
programming a new setting.

EFR BIT 0-3: Software Flow Control Select
Combinations of software flow control can be selected
by programming these bits.

XR16C854

34

Rev. 1.0

EFR bit-3 EFR bit-2 EFR bit-1 EFR bit-0 TX and RX Software Flow Control
Cont-3 Cont-2 Cont-1 Cont-0

0 0 0 0 No TX and RX flow control (default)

0 0 X X No transmit flow control
1 0 X X Transmit Xon1/Xoff1
0 1 X X Transmit Xon2/Xoff2
1 1 X X Transmit Xon1 and Xon2/Xoff1 and Xoff2

X X 0 0 No receive flow control
X X 1 0 Receiver compares Xon1/Xoff1
X X 0 1 Receiver compares Xon2/Xoff2

1 0 1 1 Transmit Xon1/ Xoff1,
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2

0 1 1 1 Transmit Xon2/Xoff2,
Receiver compares Xon1 or Xon2, Xoff1 or Xoff2

1 1 1 1 Transmit Xon1 and Xon2/Xoff1 and Xoff2,
Receiver compares Xon1 and Xon2/Xoff1 and Xoff2

0 0 1 1 No transmit flow control,
Receiver compares Xon1 and Xon2/Xoff1 and Xoff2

Table 6, Software Flow Control Functions

EFR BIT-4: Enhanced Function Bits Enable
Enhanced function control bit. The content of the IER
bits 4-7, ISR bits 4-5, FCR bits 4-5, and MCR bits 5-7
can be modified and latched. After modifying any bits in
the enhanced registers, EFR bit-4 can be set to a logic
0 to latch the new values. This feature prevents existing
software from altering or overwriting the 854 enhanced
functions.

Logic 0 = disable/latch enhanced features. IER bits 4-
7, ISR bits 4-5, FCR bits 4-5, and MCR bits 5-7 are saved
to retain the user settings, then IER bits 4-7, ISR bits 4-
5, FCR bits 4-5, and MCR bits 5-7 are initialized to the
default values shown in the Internal Resister Table. After
a reset, the IER bits 4-7, ISR bits 4-5, FCR bits 4-5, and
MCR bits 5-7 are set to a logic 0 to be compatible with
ST16C554 mode. (normal default condition).
Logic 1 = Enables the enhanced functions. When this
bit is set to a logic 1 all enhanced features of the 854 are
enabled.

EFR BIT-5: Special Character Detect Enable
Logic 0 = Special Character Detect Disabled. (normal
default condition)
Logic 1 = Special Character Detect Enabled. The 854
compares each incoming receive character with Xoff-2
data. If a match exists, the received data will be
transferred to FIFO and ISR bit-4 will be set to indicate
detection of special character. Bit-0 corresponds with
the LSB bit for the receive character. When this feature
is enabled, the normal software flow control must be
disabled (EFR bits 0-3 must be set to a logic 0).

EFR BIT-6: Auto RTS Flow Control Enable
Automatic RTS may be used for hardware flow control
by enabling EFR bit-6. When Auto RTS is selected, an
interrupt will be generated when the receive FIFO is filled
to the programmed trigger level and -RTS will go to a
logic 1at the next trigger level. -RTS will return to a logic
0 when data is unloaded below the next lower trigger
level (Programmed trigger level -1). The -RTS output
must be asserted (logic 0) before the auto RTS takes
effect. -RTS will function as a general purpose output

XR16C854

35

Rev. 1.0

when hardware flow control is disabled.
0 = Automatic RTS flow control is disabled. (normal
default condition)
1 = Enable Automatic RTS flow control.

EFR bit-7: Auto CTS Flow Control Enable
Automatic CTS Flow Control.
Logic 0 = Automatic CTS flow control is disabled.
(normal default condition)
Logic 1 = Enable Automatic CTS flow control. Trans-
mission will stop when -CTS goes to a logical 1.
Transmission will resume when the -CTS pin returns to
a logical 0.

FEATURE CONTROL REGISTER (FCR)

This register controls the XR16C854 new functions that
are not available on ST16C554 or ST16C654.

FCTR BIT-0 and 1: RTS Trigger Level Select
User selectable auto -RTS trigger delay timer for hard-
ware flow control application. After reset, these bits are
set to logic 0 selecting the next FIFO trigger level for
hardware flow control. These 2 bits are associated with
EMSR register bit 4 and 5 for more level control, see
EMSR bit 4 and 5 for complete detail.

FCTR BIT-2: RX Input Select
0 = Select RX input as encoded IrDA data.
1 = Select RX input as active high encoded IrDA data.

FCTR BIT-3: Auto RS485 Enable
The auto RS485 is not available in 854, see XR16C864.
However, it still selects/changes the TX empty interrupt
from THR to TSR.
0 = Standard ST16C550 mode. Transmitter gener-
ates interrupt when transmit holding register (THR)
becomes empty. Transmit Shift Register (TSR) may
still be shifting data bit out.
1 = Enable Auto RS485 half duplex direction control
and change the transmit interrupt to transmit shift
register (TSR) empty. Transmit empty interrupt is
generated when the transmitter shift register be-
comes empty (and changes -OP2 A-D output pin to
logic 1 with one bit time delay for receive mode. The
-OP2 output will change back to logic 0 for transmit
again when the TX FIFO is loaded with a data byte.
The change to logic 0 occurs prior shifting the start-
bit bit out).

FCTR BIT-4 and 5: TX and RX FIFO Trigger Table
Select
These 2 bits select the transmit and receive FIFO trigger
table A, B ,C or D. When table A, B, or C is selected the
auto RTS flow control trigger level is set to "next level"
for compatibility to ST16C550/650 series. -RTS triggers
on the next level of the RX FIFO trigger level, in another
word, one level above and one level below. See Tables
A-C in FCR bit 4-5 and FCR bit 6-7, i.e. if Table A is used
on the receiver with RX FIFO trigger level set to 8 bytes,
-RTS output will de-asserts at 14 and re-asserts at 4.

FCTR FCTR TX and RX FIFO Trigger
Bit-5 Bit-4 Table

0 0 TX and RX Trigger Table-A
(default)

0 1 TX and RX Trigger Table-B
1 0 TX and RX Trigger Table-C
1 1 TX and RX Trigger Table-D

FCTR BIT-6: Register Address 0x111 Select
Scratch Pad (SPR) register or FLVL and EMSR regis-
ters select for address location 0x111.
0 = Scratch Pad register (SPR) is selected as a general
read and write register, ST16C554 compatible mode.
1 = Changes the register function at address location
0x07. It switches to FIFO Level Count (FLVL) Register
for bus read operation and Enhanced Mode Select
Register for bus write operation. The FLVL indicates the
number of data bytes in the transmit or receive data
FIFO. The SPR is not available in this configuration.

FCTR BIT-7: TX/RX FIFO Trigger Register Select
Programmable trigger register select. This bit is asso-
ciated with the TRG register which actually sets the FIFO
trigger levels.
0 = Select programmable receive FIFO trigger level
register.
1 = Select programmable transmit FIFO trigger level
register.

XR16C854

36

Rev. 1.0

TRIGGER LEVEL REGISTER (TRG)

This is the user programmable transmit /receive FIFO
trigger level register. The register is associated with the
FCTR bit-7 which selects TX or RX FIFO trigger register.

TRG BIT 0-7: Write only. FIFO Trigger Level
 The value written to this register sets the TX or RX FIFO
trigger level from 0x00 (zero) to 0x80 (128). The FIFO
trigger level generates an interrupt whenever the trans-
mit FIFO level falls below its preset trigger level while the
RX FIFO generates an interrupt as soon as incoming
data fills up to its preset trigger level.

TRG BIT 0-7: Read only.
Transmit / receive FIFO level byte count. It gives an
indication of the number of characters present in the
transmit or receive FIFO. A simpler way to read the FIFO
level count is through register FLVL instead.

FIFO LEVEL REGISTER (FLVL)

The FIFO Level Byte Count Register is read only and
accessible only when FCTR bit-6 has been set to logic
1. The user can take advantage of the FIFO level byte
counter for faster data loading to the transmit FIFO and
unloading data from the receiver FIFO. Hence, reduces
CPU bandwidth requirement.

FLVL BIT 0-7: Read only. FIFO Level Counter
This register provides the number of data bytes in the
RX or TX FIFO which is determined by EMSR bit-0 and
1. The returned byte count ranges from 0x00 (zero) to
0x80 (128).

ENHANCED MODE SELECT REGISTER (ESMR)

This is a write only register and accessible only when
FCTR bit-6 is set to logic 1.

EMSR BIT-0 and 1: Write only. TX or RX FIFO Level
Counter Select
EMSR bit-0 and 1 select which FIFO byte count for
FLVL register to present when reading the byte count.
It can be transmit only, receive only, or alternate receive
and transmit byte count after each read operation. In the
alternate mode, it presents the receive count first and
the transmit count on the second read operation, and
repeats thereafter. In this case, user's software must

remember the state for the byte count.

Bit-1 Bit-0 TX/RX/ALT FIFO Level Count

0 0 Receive FIFO level count (deafult)
0 1 Transmit FIFO level count
1 0 Receive FIFO level count
1 1 Alternate RX/TX FIFO level count

EMSR BIT 2 and 3
Reserved for XR16C864 use.

EMSR BIT-4 and 5 - Write only. Auto RTS Flow
Control Hysteresis
These bits select the auto RTS flow control hysteresis
and are associated with FCTR bit 0 and 1, and only
valid when TX and RX Trigger Table-D is selected
(FCTR bit-4 and 5 are set to logic 1). The RTS
hysteresis is reference to the RX FIFO trigger level.
Below table shows the 16 selectable hysteresis
levels.

EMSR EMSR FCTR FCTR RTS Hysteresis
Bit-5 Bit-4 Bit-1 Bit-0 (characters)

0 0 0 0 Next level (default)
0 0 0 1 +/- 4
0 0 1 0 +/- 6
0 0 1 1 +/- 8

0 1 0 0 +/- 8
0 1 0 1 +/- 16
0 1 1 0 +/- 24
0 1 1 1 +/- 32

1 1 0 0 +/- 40
1 1 0 1 +/- 44
1 1 1 0 +/- 48
1 1 1 1 +/- 52

1 0 0 0 +/- 12
1 0 0 1 +/- 20
1 0 1 0 +/- 28
1 0 1 1 +/- 36

EMSR BIT 6 and 7:
Reserved for future use.

XR16C854

37

Rev. 1.0

FIFO Status Register (FSTAT)

This register is applicable only to the 100 pin XR16C854.
The FIFO Status Register provides a status indication
for each of the transmit and receive FIFO. These status
bits are complementary of the individual -TXRDY A-D
and -RXRDY A-D outputs. Each channel has its own
128 bytes of TX and RX FIFO. A bit associated with each
UART channel is asserted when any of the TX FIFO
becomes empty, or any RX FIFO becomes full, or any
FIFO level has reached the programmed trigger level.
Their behavior changes between DMA mode 0 and 1.
See Internal Registers Description.

BIT 0-3: TX FIFO channel A-D Status
DMA Mode 0
0 = The transmit FIFO is not empty, data in FIFO. One
or more locations is available for transmit data.
1 = The transmit FIFO is completely empty, no data.

DMA Mode 1
0 = The transmit FIFO is completely full and will not
accept any more data.
1 = The transmit FIFO is not full, some data in FIFO . One
or more locations is available for more data.

BIT 4-7: RX FIFO Channel A-D Status
DMA Mode 0
0 = The receiver, RHR/FIFO is empty.
1 = The receiver, RHR/FIFO is not empty.

DMA Mode 1
0 = The receive FIFO is empty or has not reached the
programmed trigger level.
1 = The receive FIFO has reached the programmed
trigger level or a time-out has occurred.

XR16C854 EXTERNAL RESET CONDITIONS

 REGISTERS RESET STATE

RHR Bits 0-7 = 0xXX
THR Bits 0-7 = 0xXX
IER Bits 0-7 = 0x00
FCR Bits 0-7 = 0x00
ISR Bits 0-7 = 0x01
LCR Bits 0-7 = 0x00
MCR Bits 0-7 = 0x00
LSR Bits 0-7 = 0x60
MSR Bits 0-3 = logic 0

Bits 4-7 = logic levels of the inputs
SPR Bits 0-7 = 0xFF
FLVL Bits 0-7 = 0x00
EMSR Bits 0-7 = 0x00
DLL Bits 0-7 = 0xXX
DLM Bits 0-7 = 0xXX
TRG Bits 0-7 = 0x00
FCTR Bits 0-7 = 0x00
EFR Bits 0-7 = 0x00
Xon-1 Bits 0-7 = 0x00
Xon-2 Bits 0-7 = 0x00
Xoff-1 Bits 0-7 = 0x00
Xoff-2 Bits 0-7 = 0x00
FSTAT Bits 0-7 = 0x00

SIGNALS RESET STATE

TX A-D Logic 1
IRTX A-D Logic 0
INT A-D Logic 0
-IRQ Logic 1 (68 mode, INTSEL=0)
-RXRDY A-D Logic 1
-TXRDY A-D Logic 0
-RTS A-D Logic 1
-DTR A-D Logic 1

XR16C854

38

Rev. 1.0

ABSOLUTE MAXIMUM RATINGS

Supply range 7 Volts
Voltage at any pin GND - 0.3 V to VCC +0.3 V
Operating temperature -40° C to +85° C
Storage temperature -65° C to 150° C
Package dissipation 500 mW

Typical Package Thermal Resistance 68-PLCC 64-TQFP 100-QFP
Theta-ja 43 70 45
Theta-jc 17 14 12

DC ELECTRICAL CHARACTERISTICS

T
A
=0° - 70°C (-40° - +85°C for Industrial grade packages), Vcc=3.3 - 5.0 V ± 10% unless otherwise specified.

VILCK Clock input low level -0.3 0.6 -0.5 0.6 V
VIHCK Clock input high level 2.4 VCC 3.0 VCC V
VIL Input low level -0.3 0.8 -0.5 0.8 V
VIH Input high level 2.0 2.2 VCC V
VOL Output low level on all outputs 0.4 V IOL= 5 mA
VOL Output low level on all outputs 0.4 V IOL= 4 mA
VOH Output high level 2.4 V IOH= -5 mA
VOH Output high level 2.0 V IOH= -1 mA
IIL Input leakage ±10 ±10 µA
ICL Clock leakage ±10 ±10 µA
ICC Avg power supply current 3 6 mA
ICC Avg stand by current 100 200 µA
CP Input capacitance 5 5 pF
RIN Internal pull-up / pull-down resistance 40 80 40 80 kΩ

Note: See the Symbol Description Table for a listing of pins having internal input pull-up or pull-down resistor.

Symbol Parameter Limits Limits Units Conditions
3.3 5.0

Min Max Min Max

XR16C854

39

Rev. 1.0

Symbol Parameter Limits Limits Units Conditions
3.3 5.0

Min Max Min Max

AC ELECTRICAL CHARACTERISTICS

T
A
=0° - 70°C (-40° - +85°C for Industrial grade packages), Vcc=3.3 - 5.0 V ± 10% unless otherwise specified.

T1w,T2w External clock periods 20 15 ns
T3w External clock freq. (40/60% duty cycle) 24 typ. 32 typ. MHz see figure 7

Serial data rate 1.5 typ. 2.0 typ. Mbps see figure 7
T3w On-chip oscillator frequency 8 24 MHz
T6s Address setup time 10 5 ns (see note 4)
T7d -IOR delay from chip select 10 5 ns (see note 4)
T7w -IOR strobe width 35 25 ns
T7h Address hold time from -IOR 10 5 ns (see note 4)
T9d Read cycle delay 40 30 ns
T12d Delay from -IOR to data 35 25 ns
T12h Data disable time 25 15 ns
T13d -IOW delay from chip select 10 10 ns (see note 4)
T13w -IOW strobe width 35 25 ns
T13h Address hold time from -IOW 10 5 ns (see note 4)
T15d Write cycle delay 40 30 ns
T16s Data setup time 10 5 ns (see note 4)
T16h Data hold time 10 5 ns (see note 4)
T17d Delay from -IOW to output 50 40 ns 100 pF load
T18d Delay to set interrupt from MODEM 40 35 ns 100 pF load

input
T19d Delay to reset interrupt from -IOR 40 35 ns 100 pF load
T20d Delay from stop to set interrupt 1 1 RCLK
T21d Delay from -IOR to reset interrupt 40 40 ns 100 pF load
T22d Delay from stop to interrupt 45 40 ns
T23d Delay from initial INT reset to transmit 8 24 8 24 RCLK

start
T24d Delay from -IOW to reset interrupt 45 40 ns
T25d Delay from stop to set -RXRDY 1 1 RCLK
T26d Delay from -IOR to reset -RXRDY 45 40 ns
T27d Delay from -IOW to set -TXRDY 45 40 ns
T28d Delay from start to reset -TXRDY 8 8 RCLK
T30s Address setup time 10 10 ns
T30w Chip select strobe width 40 40 ns
T30h Address hold time 15 15 ns
T30d Read cycle delay 70 70 ns
T31d Delay from -CS to data 15 15 ns
T31h Data disable time 15 ns
T32s Write strobe setup time 10 10 ns
T32h Write strobe hold time 10 10 ns

XR16C854

40

Rev. 1.0

Symbol Parameter Limits Limits Units Conditions
3.3 5.0

Min Max Min Max

AC ELECTRICAL CHARACTERISTICS

T
A
=0° - 70°C (-40° - +85°C for Industrial grade packages), Vcc=3.3 - 5.0 V ± 10% unless otherwise specified.

T32d Write cycle delay 70 70 ns
T33s Data setup time 20 15 ns
T33h Data hold time 10 10 ns
TR Reset pulse width 40 40 ns
N Baud rate divisor 1 216-1 1 216-1 RCLK

Note 4: Refer to application note DAN107 for further explanation.

Figure 7 . Data Rate Perfomance Chart

2.97 3.30 4.50 5.00 5.503.60

Power Supply Voltage (V)

D
at

a
R

at
e

(M
bp

s)

5

4

3

2

1

TO BE
DETERMINED

-25 oC

+85 oC
+25 oC

XR16C854

41

Rev. 1.0

Data Bus Write Timing in 16 Mode

Data bus Read Timing in 16 Mode

A0-
A2

-CS

- IOR

D0-D7

T6s

T7wT7d

T7h

T9d

T12d T12h

854-RD-2

Active

Val id Data

Val id Address

Act ive

Val id Address

Act ive

Act ive

Val id Data

A0-A2

-CS

- I O W

D0-D7

T6s

T13wT13d

T13h

T15d

T16s T16h

8 5 4 - W R - 2

 Val id Address

Act ive

Act ive

Val id Data Val id Data

 Val id Address

Act ive

Act ive

XR16C854

42

Rev. 1.0

Data Bus Write Timing in 68 Mode

Data Bus Read Timing in 68 Mode

-CS

R / - W

D0-D7

T30s T30h

T31h

T31d

T30d
T 3 0 w

854-RD-1

A0-A4 Val id Address

Act ive

Val id Data

Act ive

Val id Data

Val id Address

A0-A4

-CS

R / - W

D0-D7

T30s T30h

T30w
T32s

T32h

T32d

T33s

T33h

8 5 4 - W R - 1

Val id Address

Act ive

Val id Data Val id Data

Act ive

Val id Address

XR16C854

43

Rev. 1.0

External Clock Timing

Modem or General Purpose Input/output Timing

-IO W

-R T S
-D T R

-C D
-C T S
-D S R

IN T

-IO R

-R I

T 1 7 d

T 1 8 d T 1 8 d

T 1 9 d

T 1 8 d

X 6 5 4 -M D -1

A c tiv e

A c tiv e

C h an g e o f s ta te C h an g e o f s ta te

A c tiv e A c tiv e A c tiv e

C h an g e o f s ta te C h an g e o f s ta te

C h an g e o f s ta te

A c tiv e A c tiv e

T3w

T1wT2w

EX TE R N AL
C LO C K

X654-C K -1

XR16C854

44

Rev. 1.0

Receive Ready Timing in FIFO Mode

STOP
BIT

PARITY
BIT

DATA BITS (5-8)

D0 D1 D2 D3 D4 D5 D6 D7

START
BIT

RX

First byte
that reaches
the trigger
level

-RXRDY

-IOR

T25d

T26d

X654-RX-3

Active
Data

Ready

Active

Receiver Timing

S T O P
BIT

P A R I T Y
BIT

DATA BITS (5 -8)

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7

5 DATA B ITS

6 DATA B ITS

7 DATA B ITS

S T A R T
BIT

R X

N E X T
D A T A

S T A R T
BIT

- IOR

T 2 0 d

T 2 1 d

1 6 B A U D R A T E C L O C K 654-RX-1

Act ive

Act ive

INT A-D

XR16C854

45

Rev. 1.0

Receive Ready Timing in non FIFO Mode

STOP
BIT

PARITY
BIT

DATA BITS (5-8)

D0 D1 D2 D3 D4 D5 D6 D7

START
BIT

RX

NEXT
DATA

START
BIT

-RXRDY

-IOR

T25d

T26d

X654-RX-2

Active
Data

Ready

Active

S T O P
B IT

P A R IT Y
B IT

D A T A B IT S (5 -8)

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7

5 D A T A B IT S

6 D A T A B IT S

7 D A T A B IT S

S T A R T
B IT

T X

N E X T
D A T A

S T A R T
B IT

IN T

T 2 2 d

T 2 4 d

1 6 B A U D R A T E C L O C K X 6 5 4 -T X -1

- IO W

T 2 3 d

A c t iv e

A c t iv e
T x R e a d y

A c t iv e

Transmitter Timing

XR16C854

46

Rev. 1.0

Transmit Ready Timing in FIFO Mode

Transmit Ready Timing in non FIFO Mode

STOP
BIT

PARITY
BIT

DATA BITS (5-8)

D0 D1 D2 D3 D4 D5 D6 D7

START
BIT

TX

NEXT
DATA

START
BIT

-TXRDY

T28d

X654-TX-2

-IOW

T27d

BYTE #1

Active

Active
Transmitter ready

Transmitter
not ready

 D0-D7

STOP BIT

PARITY BIT

DATA BITS (5-8)

D0 D1 D2 D3 D4 D5 D6 D7

5 DATA BITS

6 DATA BITS

7 DATA BITS

START BIT

TX

- IOW

D0-D7

-TXRDY

BYTE #128

T28d

T27d

X654-TX-3

FIFO Ful l

Act ive

XR16C854

47

Rev. 1.0

Infrared Transmitter/Encoder Timing

Infrared Receiver/Decoder Timing

UART Frame

Data Bits
S

ta
rt

S
to

p

0 0 0 0 01 1 1 1 1TX DATA

IRTX (A-D)
TX

Bit Time
1/2 Bit Time

3/16 Bit Time

UART Frame

Data Bits

S
ta

rt

S
to

p

0 0 0 0 01 1 1 1 1

Bit Time 0-1 16x clock
delay

X654-IR-1

RX DATA

IRRX (A-D)
RX

Package Dimensions

Package Dimensions

A 0.055 0.063 1.40 1.60

A1 0.002 0.006 0.05 0.15

A2 0.053 0.057 1.35 1.45

B 0.005 0.009 0.13 0.23

C 0.004 0.008 0.09 0.20

D 0.465 0.480 11.80 12.20

D1 0.390 0.398 9.90 10.10

e 0.020 BSC 0.50 BSC

L 0.018 0.030 0.45 0.75

α 0° 7° 0° 7°

64 LEAD THIN QUAD FLAT PACK
(10 x 10 x 1.4 mm, TQFP)

Rev. 2.00

SYMBOL MIN MAX MIN MAX

INCHES MILLIMETERS

48 33

32

17

1 16

49

64

D

D1

DD1

B

e
A2

α
A1

A

Seating Plane

Note: The control dimension is the millimeter column

L

C

Package Dimensions

68 LEAD PLASTIC LEADED CHIP CARRIER
(PLCC)
Rev. 1.00

1

D

D 1

D D1

D3

D2

A

A1

2 68

A 0.165 0.200 4.19 5.08

A1 0.090 0.130 2.29 3.30

A2 0.020 –––. 0.51 –––

B 0.013 0.021 0.33 0.53

B1 0.026 0.032 0.66 0.81

C 0.008 0.013 0.19 0.32

D 0.985 0.995 25.02 25.27

D1 0.950 0.958 24.13 24.33

D2 0.890 0.930 22.61 23.62

D3 0.800 typ. 20.32 typ.

e 0.050 BSC 1.27 BSC

H1 0.042 0.056 1.07 1.42

H2 0.042 0.048 1.07 1.22

R 0.025 0.045 0.64 1.14

SYMBOL MIN MAX MIN MAX

INCHES MILLIMETERS

B

A2

B1

e

Seating Plane

D3

Note: The control dimension is the inch column

45° x H2
45° x H1

C

R

XR16C854

48

Rev. 1.0

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to
improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any
circuits described herein, conveys no license under any patent or other right, and makes no representation that
the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration
purposes and may vary depending upon a user’s specific application. While the information in this publication
has been carefully checked; no responsibility, however, is assumed for in accuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the
failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to
significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless
EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has
been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately
protected under the circumstances.

Copyright 1999 EXAR Corporation
Datasheet NovemberP1999
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

APPENDIX B

EXAR 16C554 Datasheet Reprint
EXAR 16C554 – Quad UART Datasheet Reprint EXAR 16C854.pdf

Cable Drawings
Part Number Description

 CBL-173-1 20-pin ribbon to two male 9-pin "D" connector adapter cable

Software Examples
Windows NT/2000/XP Registry changes for using shared interrupts with PCM-COM4A
and PCM-COM8

NTCOM4Example HTML

PCM-COM8 Examples Files pcom8.zip

Using Shared Interrupts with Linux linux_com4_shared.pdf

 Telephone: 817-274-7553 . . Fax: 817-548-1358
 http://www.winsystems.com . . E-mail: info@winsystems.com

WARRANTY

WinSystems warrants that for a period of two (2) years from the date of shipment any Products and Software
purchased or licensed hereunder which have been developed or manufactured by WinSystems shall be free of any
material defects and shall perform substantially in accordance with WinSystems' specifications therefore. With
respect to any Products or Software purchased or licensed hereunder which have been developed or manufactured
by others, WinSystems shall transfer and assign to Customer any warranty of such manufacturer or developer held
by WinSystems, provided that the warranty, if any, may be assigned. The sole obligation of WinSystems for any
breach of warranty contained herein shall be, at its option, either (i) to repair or replace at its expense any materially
defective Products or Software, or (ii) to take back such Products and Software and refund the Customer the
purchase price and any license fees paid for the same. Customer shall pay all freight, duty, broker's fees, insurance
changes and other fees and charges for the return of any Products or Software to WinSystems under this warranty.
WinSystems shall pay freight and insurance charges for any repaired or replaced Products or Software thereafter
delivered to Customer within the United States. All fees and costs for shipment outside of the United States shall be
paid by Customer. The foregoing warranty shall not apply to any Products or Software which have been subject to
abuse, misuse, vandalism, accidents, alteration, neglect, unauthorized repair or improper installations.

THERE ARE NO WARRANTIES BY WINSYSTEMS EXCEPT AS STATED HEREIN. THERE ARE NO
OTHER WARRANTIES EXPRESS OR IMPLIED INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, IN NO
EVENT SHALL WINSYSTEMS BE LIABLE FOR CONSEQUENTIAL, INCIDENTAL, OR SPECIAL
DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF DATA, PROFITS OR
GOODWILL. WINSYSTEMS' MAXIMUM LIABILITY FOR ANY BREACH OF THIS AGREEMENT OR
OTHER CLAIM RELATED TO ANY PRODUCTS, SOFTWARE, OR THE SUBJECT MATTER
HEREOF, SHALL NOT EXCEED THE PURCHASE PRICE OR LICENSE FEE PAID BY CUSTOMER
TO WINSYSTEMS FOR THE PRODUCTS OR SOFTWARE OR PORTION THEREOF TO WHICH
SUCH BREACH OR CLAIM PERTAINS.

WARRANTY SERVICE

All products returned to WinSystems must be assigned a Return Material Authorization (RMA) number. To obtain
this number, please call or FAX WinSystems' factory in Arlington, Texas and provide the following information:
 1. Description and quantity of the product(s) to be returned including its serial number.
 2. Reason for the return.
 3. Invoice number and date of purchase (if available), and original purchase order number.
 4. Name, address, telephone and FAX number of the person making the request.
 5. Do not debit WinSystems for the repair. WinSystems does not authorize debits.
After the RMA number is issued, please return the products promptly. Make sure the RMA number is visible on the
outside of the shipping package.

The customer must send the product freight prepaid and insured. The product must be enclosed in an anti-static bag
to protect it from damage caused by static electricity. Each bag must be completely sealed. Packing material must
separate each unit returned and placed as a cushion between the unit(s) and the sides and top of the shipping
container. WinSystems is not responsible for any damage to the product due to inadequate packaging or static
electricity.

	Home
	Table of Contents
	Visual Index - Quick Reference
	1 General Information
	1.1 Features
	1.2 General Description
	1.3 Specifications

	2 PCM-COM8 Technical Reference
	2.1 Introduction
	2.2 Configuration Address Selection
	2.3 Configuration Registers
	2.4 Interrupt Termination
	2.5 RS-232/RS-422/RS-485 Mode Select
	2.6 Serial Port I/O Pin Definitions
	2.7 EEPROM Programming Interface
	2.8 PC/104 Bus Connectors
	2.9 Jumper/Connector Summary

	3 PCM-COM8 Software Examples
	3.1 Introduction
	3.2 Configuration Program Examples
	3.3 Serial I/O Examples

	APPENDIX A Example Programs Source Listings
	APPENDIX B
	EXAR 16C554 Datasheet Reprint
	Cable Drawings
	Software Examples

	Warranty and Repair Information

